資料1-1

泊発電所3号炉 基準津波の策定について

令和6年8月2日 北海道電力株式会社

本資料の説明概要

本資料の説明範囲

○本資料では、「基準津波の策定」について主に説明する。 ▶また、上記に併せて、「海域活断層に想定される地震に伴う津波」のうち、積丹半島北西沖の断層による津波評価を説明する。

※3:「F_B-2断層」については、「後志海山東方の断層~F_B-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

本資料の説明概要

説明概要(1/2)

【基準津波の策定】

- ○「地震に伴う津波」,「地震以外の要因に伴う津波」及び「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の津波評価結果を比較す ることで,敷地に対して最も大きな影響を及ぼす波源である「組合せ評価における最大波源(水位上昇側:8波源,水位下降側:4波源)」を 基準津波に選定した。
- ○基準津波の策定位置は,施設からの反射波の影響が微少となるよう,泊発電所の西方約5kmの地点(水深100m)を選定した。
- ○基準津波が敷地周辺における津波堆積物等の地質学的証拠や歴史記録等から推定される津波の規模及び行政機関による津波評価を上 回ることを確認した。

○以上のとおり,基準津波を策定し,その妥当性を確認した。

【積丹半島北西沖の断層による津波評価】

○海域活断層に想定される地震に伴う津波のうち,積丹半島沖の断層の津波について数値シミュレーションによる評価を実施し,その結果から,敷地に及ぼす影響が小さいことを確認した。

○なお,この断層による津波については,「日本海東縁部に想定される地震に伴う津波」よりも敷地への影響が十分に小さいことが明白であったことから,「地震以外の要因に伴う津波との組合せ評価」の対象とはしていなかったものの,海域活断層による津波として詳細な数値を把握するためシミュレーションによる評価を行った。

本資料の説明概要

説明概要(2/2) 基準津波一覧

○「地震に伴う津波」、「地震以外の要因に伴う津波」及び「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の津波評価結果を比較した結果、「日本海東縁部に想定される地震に伴う津波」と「陸上地すべり(川白)に伴う津波」を組合せた津波波源が敷地に対して最も大きな影響を及ぼす波源となる。

○地形モデル毎の各評価項目が最大となる津波波源として,水位上昇側の基準津波は「基準津波A~H」の8波源,水位下降側の基準津波 は「基準津波Ⅰ~L」の4波源を選定した。

新年度日		健全地形セテル	防波	堤の損傷を考慮した地形七ナル①	防波	堤の損傷を考慮した地形七ナル②	防波	堤の損傷を考慮した地形七ナル③
計画視日	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ
防潮堤前面 (上昇側)	13.44m	 新層バターン:6 速源位置:くの字モデル(東へ10km) アスペリティ位置:de南へ20km ・訪層面上縁深さ:5km ・組合せの時間差:115s 	15.65m	・新層パターン:7 - 波源位置: 短形モデル (東へ15km) - アスペリティ位置: de南へ20km - 新層面上録深さ:5km - 組合せの時間差: 115s	14.98m	・断層バターン:7 - 波源位置: 矩形モデル (東へ15km) - アスペリティ位置: ce南へ20km - 訪層面上録深さ:5km - 総合せの時間差: 115s	15.68m	・断層パターン:7 - 波源位置: 矩形モデル (東へ15km) - アスペリティ位置: de南へ20km - 断層面上録深さ:5km - 総合せの時間差: 110s
3号炉 取水口 (上昇側)	10.45m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 110s	13.14m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 110s	11.86m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 115s	12.89m	・断層バターン:7 ・波源位置: 短形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 110s
1号及び2号炉 取水口 (上昇側)	9.34m	・断層バターン:6 ・波源位置: 矩形モデル (東へ5km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 135s	12.74m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 115s	12.01m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 85s	11.50m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 120s
放水口 (上昇側)	10.91m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 135s	10.84m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 135s	10.85m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 135s	10.66m	・断層バターン:7 ・波源位置: 42形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 135s

【基準津波(水位上昇側)】

※4地形モデル×4評価項目=16波源に対して、一部の波源が重複する(同一波源が選定される)ため、基準津波 A~基準津波 Hの8波源となる。

【基準津波(水位下降側)】

誕佈宿日		健全地形モデル	防波	と 堤の損傷を考慮した地形モデル①	防波	8堤の損傷を考慮した地形モデル②	防波堤の損傷を考慮した地形モデル③		
计画块口	時間 断層パラメータの概要		時間	断層パラメータの概要	時間	断層パラメータの概要	時間	断層パラメータの概要	
「貯留堰を 下回る時間」	721s	・断層パターン:6 - 波源位置:くの字モデル(西へ20km) - アスペリティ位置:de南へ20km - 新層面上縁深さ:5km - 組合せの時間差:40s	698s	- 新層バターン:7 - 波源位置:くの字モデル(西へ25km) - アスペリティ位置:de南へ20km - 新層面上縁深さ:5km - 組合せの時間差:45s	743s	- 新層バターン:7 - 波源位置: 矩形モデル (東へ15km) - アスペリティ位置: de南へ20km - 新層面上縁深さ: 5km - 組合せの時間差: 135s	863s	- 新層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de - 新層面上縁深さ: 3km ・組合せの時間差: 90s	

	5

1. 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	, 9
(3) 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4) 基準津波と既往津波から推定される津波高との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
a 基準達波と既往達波から推定される達波高との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
h. 比較的層厚が大きい津波堆積物の老客 ····································	30
 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5) 其進浄波と行政機関による浄波画ののこの	37
	20
a. 山牧刈家の送足(JILFI) b. 沈酒設宁の考えてひび留任冬州竿の比較(CTED2)	40
D. 収添設との考え力及び所们本計寺の比較(SIEF2)	42
C. 致胆ンミュレーション結果の応致(SIEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
0. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6/
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. 補足説明資料 ••••••••••••••••••••••••••••••••••••	. 89
(1) 基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2) 行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	102
(4) 津波の数値シミュレーションに関する過去の審査からの変更点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
参考文群 ····································	116
	110

(1) 基準津波の策定方針

策定方針(1/3) 評価項目の考え方

一部修正(R5/12/8審査会合)

○基準津波は,「地震に伴う津波」,「地震以外の要因に伴う津波」及び「地震に伴う津波と地震以外の要因に伴う津波の組合せ」のうち,以 下の各評価項目が最大となる津波波源(敷地に対して最も大きな影響を及ぼす波源)とする。

【水位下降側】

【水位上昇側】

○耐震重要施設等が設置された敷地(T.P.+10m)への津波の遡上,取水路及び放水路を介し津波が流入する可能性を評価するため、「防潮堤前面」、「3号炉取水口」、「1号及び2号炉取水口」並びに「放水口」における水位上昇量が最大となる津波波源が敷地に対して最も大きな影響を及ぼす波源(水位上昇側)となる。

○水位変動に伴う取水性低下による重要な安全機能への影響(原子炉補機 冷却海水ポンプの取水性)を評価するため、3号炉取水口前面における「貯 留堰を下回る時間」[※]が最大となる津波波源が敷地に対して最も大きな影 響を及ぼす波源(水位下降側)となる。

> ※取水口前面に貯留堰を設置することで取水性を確保するため、3号取水 口の「水位下降量」ではなく、「貯留堰を下回る時間」を評価項目とする。

水位上昇側に関する評価項目

水位下降側に関する評価項目

策定方針(2/3) 地形モデルの考え方

一部修正(R5/12/8審査会合)

- ○基準津波は. 以下の考えにより. 地形モデル (健全地形モデル. 防波堤の損傷を考慮した地形モデル①~③) 毎の最大ケースとする。
- ▶ 泊発電所の津波の特徴(様々な方向から津波が伝播する)より,防波堤の損傷の有無によって「水位」・「貯留堰を下回る時間」に及ぼす 影響が異なり,地形モデル毎に各評価項目の最大ケースとして選定される波源が異なる。
- ▶ 基準津波の策定後に実施する施設(津波防護施設,浸水防止設備など)への影響評価においては,「水位」・「貯留堰を下回る時間」の 大きい波源を選定することが,安全側の評価となるため,地形モデル毎の最大ケースを基準津波に選定する。

※上記の考え方の整理にあたり、先行サイトでの評価(地形モデル毎の最大ケースを基準津波に選定している例がある)も参考にした。

(1) 基準津波の策定方針

策定方針(3/3) 基準津波の選定結果の確認

○「実用発電用原子炉及びその付属施設の位置,構造及び設備の基準に関する規則の解釈 別記3」を踏まえ,基準津波の策定にあたっては,最新の知見を反映したうえで,基準津波が敷地周辺における津波堆積物等の地質学的証拠や歴史記録等から推定される津波高及び行政機関による津波評価を上回ることを確認する。

【行政機関による津波評価との比較】

- ○行政機関では、「地震に伴う津波」を対象に検討している。
- ○泊発電所の基準津波は、「日本海東縁部に想定される地震に伴う津波」と「陸上地すべり(川白)に伴う津波」を組合せた津波である。
 ○以上のことから、基準津波の基となる「日本海東縁部に想定される地震に伴う津波」を対象として、波源設定の考え方及び解析条件等の
 比較を実施し、「日本海東縁部に想定される地震に伴う津波」が安全側の設定・評価結果となっていることを確認する。
 ○そのうえで、基準津波が行政機関による津波評価を上回ることを確認する。

「実用発電用原子炉及びその付属施設の位置,構造及び設備の基準に関する規則の解釈 別記3」を抜粋 五 基準津波による遡上津波は、敷地周辺における津波堆積物等の地質学的証拠及び歴史記録等から推定される津波高及び浸水域を上回 っていること。また、行政機関により敷地又はその周辺の津波が評価されている場合には、波源設定の考え方及び解析条件等の相違点 に着目して内容を精査した上で、安全側の評価を実施するとの観点から必要な科学的・技術的知見を基準津波の策定に反映すること。

1. 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3) 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
a. 基準津波と既往津波から推定される津波高との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
b. 波源設定の考え方及び解析条件等の比較 (STEP2) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
c. 数値シミュレーション結果の比較(STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. 補足説明資料 •••••••	89
(1) 基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2) 行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16

基準津波の策定 1.

(2) 基準津波の選定

水位上昇側の基準津波の選定(1/2)

○健全地形モデルを対象とした「地震に伴う津波」、「地震以外の要因に伴う津波」及び「地震に伴う津波と地震以外の要因に伴う津波の組 合せ」の津波評価結果を比較した結果、各評価項目が最大となる波源は「日本海東縁部に想定される地震に伴う津波と陸上地すべり(川 白)に伴う津波の組合せ」である。

○健全地形モデルにおける評価結果から「日本海東縁部に想定される地震に伴う津波と陸上地すべり(川白)に伴う津波の組合せ」が他の 達波よりも十分に大きいことを確認できたため.防波堤の損傷を考慮した地形モデル①~③においても.「日本海東縁部に想定される地震 (に伴う津波と陸上地すべり(川白)に伴う津波の組合せ」が敷地に大きな影響を及ぼす波源になると判断した。

▷「F_B-2断層」については、「後志海山東方の断層~F_B-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波 源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

					ᄼᄚᅮᆝᄥᅴᄱᇅ	木、陆エ心ハ) L / ///			<mark>貝ハノナ</mark> 。	<mark>~~</mark> は評価項目の取入り一へでめる。
			地震に伴う	津波		地震以外の要因に伴う津波 地震に伴う津波と地震以外 要因に伴う津波の組合					
	口士法主领加口	海域活断層に想定される地震に伴う津波					Data L	브亦날病			口士海古纪初行相向之后之地。
評価項目	お定される地震 に伴う津波	積丹半島北西沖 の断層 (走向0°)	積丹半島北西沖 の断層 (走向20°)	積丹半島北西沖 の断層 (走向40°)	F _B 一2断層	F _s −10断層~ 岩内堆東撓曲~ 岩内堆南方背斜	隆上 地すべり (川白)	右盤崩壊 (ビンノ岬 付近)	海底 地すべりE	山体崩壊 (渡島大島)	日本海東稼部に想定される地 震に伴う津波と陸上地すべり (川白)に伴う津波の組合せ
	水位上昇量	水位上昇量	水位上昇量	水位上昇量	水位上昇量	水位上昇量	水位上昇量	水位上昇量	水位上昇量	水位上昇量	水位上昇量
防潮堤前面 (上昇側)	10.20m	1.61m	2.31m	1.25m	5.16m	6.67m	4.92m	2.41m	0.24m	1.59m	13.44m
3号炉 取水口 (上昇側)	8.50m	1.63m	1.34m	1.17m	3.76m	4.70m	4.70m 3.45m 1.53m 0.22m		1.32m	10.45m	
1号及び2号炉 取水口 (上昇側)	8.63m	1.52m	1.35m	1.16m	3.61m	4.69m	3.64m	1.41m	0.22m	1.22m	9.34m
放水口 (上昇側)	9.20m	1.52m	1.37m	1.31m	3.62m	3.80m	5.91m	1.71m	0.24m	1.13m	10.91m

【夕海池の読伝姓田 (碑合地形エニル)】

※ 取新の計昇条件に更新し(、 数値ンミュレーンヨンを冉美肔した結果を用いた (変更点は、 PlU/~ll5を参照

○以上より、各評価項目が最大となる波源である「日本海東縁部に想定される地震に伴う津波と陸上地すべり(川白)に伴う津波の組合せ」 を対象に、次頁において、地形モデル毎の基準津波を選定する。

(2) 基準津波の選定

水位上昇側の基準津波の選定(2/2)

○水位上昇側の基準津波は、「日本海東縁部に想定される地震に伴う津波と陸上地すべり(川白)に伴う津波の組合せ」における地形モデル 毎の各評価項目が最大となる津波波源として、基準津波A~Hの8波源※を選定する。

運備值日		健全地形モデル	防波	堤の損傷を考慮した地形モデル①	防波	堤の損傷を考慮した地形モデル②	防波	防波堤の損傷を考慮した地形モデル③ 上昇量 断層パラメータ ・断層パラメータ ・断層パターン:7 基準津波F ・該源位置:矩形モデル(東へ15km) う68m ・所層面上線深さ5km ・組合せの時間差:110s		
計画項口	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ	防波堤の損傷を考慮した地形モ 水位上昇量 断層パラメー: 15.68m ・断層パターン:7 ・波源位置:矩形モデル(東へ1: ・アスペリティ位置:de南へ20km ・組合せの時間差:110s 12.89m ・断層パターン:7 ・波源位置:矩形モデル(東へ1: ・町層面上縁深さ:5km 12.89m ・断層パターン:7 ・波源位置:矩形モデル(東へ1: ・町層回上縁深さ:5km 11.50m ・断層パターン:7 ・波源位置:矩形モデル(東へ1: ・町層面上縁深さ:5km 11.50m ・断層パターン:7 ・波源位置:矩形モデル(東へ1: ・アスペリティ位置:de南へ30km ・組合せの時間差:120s ・断層パターン:7 ・波源位置:地形モデル(東へ1: ・アスペリティ位置:de南へ30km ・組合せの時間差:15km 10.66m ・断層二線深さ:5km ・知合中の時間差:15km	断層パラメータ		
防潮堤前面 (上昇側)	13.44m	・断層バターン:6 ・波源位置:くの字モデル (東へ10km) ・アスペリティ位置:de南へ20km ・断層面上縁深さ:5km ・組合せの時間差:115s	15.65m	・断層バターン:7 ・波源位置: /毎形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 115s	14.98m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 115s	15.68m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 110s		
3号炉 取水口 (上昇側)	10.45m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 110s	13.14m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ:5km ・組合せの時間差: 110s	11.86m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 115s	12.89m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 110s		
1号及び2号炉 取水口 (上昇側)	9.34m	・断層バターン:6 ・波源位置: 矩形モデル (東へ5km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 135s	12.74m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 115s	12.01m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ20km ・断層面上縁深さ: 5km ・組合せの時間差: 85s	11.50m	・断層バターン:7 ・波源位置: 矩形モデル (東へ15km) ・アスペリティ位置: de南へ30km ・断層面上縁深さ: 5km ・組合せの時間差: 120s		
放水口 (上昇側)	10.91m	・断層パターン:7 -波道位置:矩形モデル(東へ15km) -アスペリティ位置:cle南へ30km ・断層面上録深さ:5km -組合せの時間差:135s	10.84m	・ 断層バターン:7 ・ 波運位置: 地形モデル(東へ15km) ・ アスペリティ位置: edem、30km ・ 断層面上緑深さ:5km ・ 組合せの時間差:135s	10.85m	- 断層バターン:7 - 波源位置: 矩形モデル (東へ15km) - アスペリティ位置: de南へ30km - 訪層面上縁深さ:5km - 組合せの時間差: 135s	10.66m	・断層パターン:7 - 波源位置:短形モデル(東へ15km) - アスペリティ位置:de南へ30km - 訪層面上録深さ:5km - 総合せの時間差:135s		

【基準津波(水位上昇側)】

※4地形モデル×4評価項目=16波源に対して、一部の波源が重複する(同一波源が選定される)ため、基準津波 A~基準津波 Hの8波源となる。

水位上昇側の基準津波の特徴(1/2) 防潮堤前面(上昇側)の最大ケースに着目した整理

○防潮堤前面(上昇側)の最大ケース(基準津波A・E・F)に着目し.防潮堤前面の最大水位の縦断図 (右図) 及び最大水位上昇量分布図(下図)を整理した。 ○地形モデルの違い(防波堤の損傷の有無)によって水位に及ぼす影響が異なり.地形モデル毎の最 大ケースとして選定した基準津波の特徴は、以下のとおりである。

《健全地形モデル》

津波の伝播方向に着目して、網羅的に波源選定をした 結果,防波堤があることにより,その内側(地点2~3)へ 結果,防波堤がないことにより,その内側(地点2~3) の伝播が阻害されるため、それ以外の範囲(地点4~5) の水位が高い波源として、基準津波Aが選定された。

《防波堤の損傷を考慮した地形モデル①~③》 津波の伝播方向に着目して、網羅的に波源選定をした の水位が高い波源として、基準津波E・Fが選定された。

本頁の整理対象:防潮堤前面(上昇側)の最大ケース(基準津波A・E・F)

防潮堤前面の最大水位の縦断図

最大水位上昇量分布図

1. 基準津波の策定 (2) 基準津波の選定

水位上昇側の基準津波の特徴(2/2) 地形モデル毎の最大ケースに着目した整理

○地形モデル毎の最大ケースに着目し、防潮堤前面の最大水位の縦断図(下図)※を整理した。

※最大水位上昇量分布は,前頁,若しくは,「3章(1) 基準津波の最大水位上昇量分布」(P90~93)を参照

【基準津波(水位上昇側)】

防潮堤前面の最大水位の縦断図

(2) 基準津波の選定

水位下降側の基準津波の選定(1/2)

○健全地形モデルを対象とした「地震に伴う津波」、「地震以外の要因に伴う津波」及び「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の津波評価結果を比較した結果、「貯留堰を下回る時間」が最大となる波源は「地震に伴う津波と地震以外の要因に伴う津波の組合せ」である。

○健全地形モデルにおける評価結果から「日本海東縁部に想定される地震に伴う津波と陸上地すべり(川白)に伴う津波の組合せ」が他の 津波よりも十分に大きいことを確認できたため、防波堤の損傷を考慮した地形モデル①~③においても、「日本海東縁部に想定される地震 に伴う津波と陸上地すべり(川白)に伴う津波の組合せ」が敷地に大きな影響を及ぼす波源になると判断した。

▶「F_B-2断層」については、「後志海山東方の断層~F_B-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波 源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

			地震に伴う	津波		地震以外の要因に伴う津波				地震に伴う津波と地震以外の 要因に伴う津波の組合せ		
評価項目	日本海東縁部に 想定される地震 に伴う津波	積丹半島北西沖 の断層 (走向0°)	海域活断層に 積丹半島北西沖 の断層 (走向20°)	想定される地震に 積丹半島北西沖 の断層 (走向40°)	1震に伴う津波 (西沖 F _s -10断層~ 「F _b -2断層 岩内堆東撓曲・ ・)		陸上 地すべり (川白)	岩盤崩壊 (ビンノ岬 付近)	海底 地すべりE	火山による 山体崩壊 (渡島大島)	日本海東縁部に想定される地 震に伴う津波と陸上地すべり (川白)に伴う津波の組合せ	
	時間	時間	時間	時間	時間	時間	時間	時間	時間	時間	時間	
「貯留堰を 下回る時間」	706s	Os	Os	Os	Os	33s	38s	Os	Os	Os	721s	

【各津波の評価結果(健全地形モデル)】

<mark>黄ハッチング</mark>は評価項目の最大ケースである。

※最新の計算条件に更新して、数値シミュレーションを再実施した結果を用いた(変更点は、P107~115を参照)。

○以上より、「貯留堰を下回る時間」が最大となる波源である「地震に伴う津波と地震以外の要因に伴う津波の組合せ(日本海東縁部に想定 される地震に伴う津波と陸上地すべり(川白)に伴う津波の組合せ)」を対象に、次頁において、地形モデル毎の基準津波を選定する。

1. 基準津波の策定 (2) 基準津波の選定

水位下降側の基準津波の選定(2/2)

○水位下降側の基準津波は、「日本海東縁部に想定される地震に伴う津波と陸上地すべり(川白)に伴う津波の組合せ」における地形モデル 毎の「貯留堰を下回る時間」が最大となる津波波源として、基準津波Ⅰ~Lの4波源を選定する。

【基準津波(水位下降側)】

評価項目		健全地形モデル	防波	堤の損傷を考慮した地形モデル①	防波	そ堤の損傷を考慮した地形モデル②	防波堤の損傷を考慮した地形モデル③		
	時間	断層パラメータの概要	時間	断層パラメータの概要	時間	断層パラメータの概要	時間	断層パラメータの概要	
「貯留堰を 下回る時間」	721s	・断層パターン:6 - 断層パターン:6 - 波源位置: くの字モデル (西へ20km) - アスペリティ位置: と6南へ20km - 断層面上縁深さ:5km - 組合せの時間差: 40s	698s	・新層パターン:7 - 波源位置: くの字モデル (西へ25km) - アスペリティ位置: de南へ20km - 新層面上縁深さ:5km - 組合せの時間差: 45s	743s	- 断層バターン:7 - 波源位置: 40形モデル (東へ15km) - アスペリティ位置: de南へ20km - 断層面上線深さ: 5km - 組合せの時間差: 135s	863s	- 断層バターン:7 - 波源位置: 矩形モデル (東へ15km) - アスペリティ位置: de - 断層面上縁深さ: 3km - 組合せの時間差: 90s	

1. 基準津波の策定 (2) 基準津波の選定

15.0

10.0

5.0

0.0

m -5.0

-10.0

-15.0

15.0

10.0

5.0

0.0

<u>m</u> -5.0

-10.0

-15.0

10

15

水

位

10

15

水

位

3号炉取水口前面位置での水位時刻歴波形の整理

○基準津波(水位下降側)を対象に、3号炉取水口前面位置での水位時刻歴波形及び その波形より算出した「貯留堰を下回る時間」(下図)を整理した。

3号炉貯留堰~取水路、取水ピット縦断面図

水位時刻應波形抽出地点: 3号炉取水口前面 3号炉貯留堰

水位時刻歴波形の抽出地点

※水位時刻歴波形は、3号炉取水口前面の代表点から抽出した。

60

60

1. 基準津波の策定 (3) 基準津波の策定

1. 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		9
(3) 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••••	17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		23
a. 基準津波と既往津波から推定される津波高との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		30
c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		39
b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		42
c. 数値シミュレーション結果の比較(STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		72
3. 補足説明資料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		89
(1) 基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		90
(2) 行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1	102
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・	1	106
参考文献 ••••••	••••••	116

(3) 基準津波の策定

(3) 基準津波の策定

基準津波一覧(2/2) 地形モデル毎の解析結果

【基準津波(水位上昇側)】

【基準津波(水位下降側)】

波源	断層パラメータ	地形モデル	防潮堤前面 (上昇側)	3号炉 取水口 (上昇側)	1号及び2号炉 取水口 (上昇側)	放水口 (上昇側)	波源	断層バラメータ	地形モデル	「貯留堰を 下回る時間」
	・断層パターン:6	健全地形モデル	13.44m	7.54m	7.84m	7.71m		・断層パターン:6	健全地形モデル	721s
其淮海池 ∧	 波源位置:くの字モデル(東へ10km) アスペリティ位置:domo.20km 	防波堤の損傷を考慮した地形モデル①	13.59m	8.38m	8.72m	7.65m	其谁海池」	・波源位置:くの字モデル(西へ20km)	防波堤の損傷を考慮した地形モデル①	666s
圣牛伴 权 A	・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル②	13.55m	7.85m	8.98m	7.69m	奉牛库収	・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル②	695s
	 ・組合せの時間差:115s 	防波堤の損傷を考慮した地形モデル③	13.48m	8.22m	7.92m	7.74m		・組合せの時間差:40s	防波堤の損傷を考慮した地形モデル③	412s
	・断層パターン:7	健全地形モデル	11.95m	10.45m	9.05m	8.44m		・断層パターン:7	健全地形モデル	681s
其淮淒波 B	 波源位置:矩形モデル(東へ15km) マスペリニック第二はの声の20km 	防波堤の損傷を考慮した地形モデル①	15.08m	12.79m	12.35m	7.95m	其谁海池(・波源位置:くの字モデル(西へ25km) - アスペリティ位置:do声へ20km	防波堤の損傷を考慮した地形モデル①	698s
坐十 年 校 0	・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル②	14.74m	11.72m	11.75m	8.39m	● 奉牛岸 収 0	・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル②	706s
	•組合せの時間差:110s	防波堤の損傷を考慮した地形モデル③	15.58m	12.89m	11.24m	7.71m		・組合せの時間差:45s	防波堤の損傷を考慮した地形モデル③	701s
	・断層パターン:6	健全地形モデル	10.65m	9.09m	9.34m	7.49m		・断層パターン:7	健全地形モデル	695s
基進津波 C	・波源位置:矩形モデル(東へ5km) ・アスペリティ位置:de南へ20km ・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル①	10.97m	10.26m	9.01m	7.47m	· 其淮淒波 K	・波源位置:矩形モデル(東へ15km) ↓・アスペリティ位置:de南へ20km ↓・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル①	425s
v		防波堤の損傷を考慮した地形モデル②	12.39m	9.55m	11.05m	7.45m			防波堤の損傷を考慮した地形モデル②	743s
	•組合せの時間差:135s	防波堤の損傷を考慮した地形モデル③	10.67m	10.24m	9.27m	7.57m		 ・組合せの時間差:135s 	防波堤の損傷を考慮した地形モデル③	815s
	・断層パターン:7	健全地形モデル	10.52m	9.49m	8.57m	10.91m		 ・断層バターン:7 ・波源位置:矩形モデル(東へ15km) ・アスペリティ位置:de 	健全地形モデル	585s
其淮淒波 D	•波源位置:20パテアル(東へ15km) •アスペリティ位置:de南へ30km •断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル①	12.58m	11.31m	11.58m	10.84m	基準津波L		防波堤の損傷を考慮した地形モデル①	375s
		防波堤の損傷を考慮した地形モデル②	11.55m	10.69m	10.68m	10.85m		・断層面上縁深さ:3km	防波堤の損傷を考慮した地形モデル②	584s
	 ・組合せの時間差:135s 	防波堤の損傷を考慮した地形モデル③	12.53m	11.56m	10.85m	10.66m		・組合せの時間差:90s	防波堤の損傷を考慮した地形モデル③	863s
	・断層パターン:7	健全地形モデル	11.19m	10.01m	8.73m	8.91m		1:水酒		
基準津波 E	 ・波源12直・セルマテル(東へ15km) ・アスペリティ位置:de南へ20km 	防波堤の損傷を考慮した地形モデル①	15.65m	13.09m	12.74m	8.35m	61	十 川文 川示		
	・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル②	14.98m	11.86m	11.76m	8.84m				
	・組合せの時間差:115s	防波堤の損傷を考慮した地形モデル③	15.51m	12.79m	11.43m	8.08m	4			
	 ・断層パターン:7 ・逆流位業・近応エニドル(声を15km) 	健全地形モデル	11.67m	10.16m	8.80m	8.32m				
基準津波 F	*波源位直・紀形モデル(泉へ)5km	防波堤の損傷を考慮した地形モデル①	15.54m	13.14m	12.70m	7.72m				
	・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル②	14.95m	11.80m	11.89m	8.26m				
	・組合せの時間差:110s	防波堤の損傷を考慮した地形モデル③	15.68m	12.89m	11.27m	7.79m				
	・断層パターン:7 、波波位置・振転エデル(声を15km)	健全地形モデル	12.70m	8.60m	8.41m	7.31m				
基準津波 G	*波源位直・紀形モテル(泉へ15km) ・アスペリティ位置:de南へ20km	防波堤の損傷を考慮した地形モデル①	12.79m	11.75m	11.45m	7.72m				
	 断層面上縁深さ:5km 	防波堤の損傷を考慮した地形モデル②	12.99m	10.60m	12.01m	7.34m				
	 ・組合せの時間差:85s 	防波堤の損傷を考慮した地形モデル③	12.99m	11.22m	10.78m	7.79m	4			
	・断層パターン:7	健全地形モデル	11.07m	10.22m	8.95m	9.66m				
基準津波 H	*波源1200・20パーナル(東へ15KM) ・アスペリティ位置:de南へ30km	防波堤の損傷を考慮した地形モデル①	15.20m	12.59m	12.45m	9.40m				
	・断層面上縁深さ:5km	防波堤の損傷を考慮した地形モデル②	14.44m	11.76m	11.54m	9.61m				
	・組合せの時間差:120s	防波堤の損傷を考慮した地形モデル③	15.05m	12.52m	11.50m	9.14m]			

20

(3) 基準津波の策定

1. 基準津波の策定 (3) 基準津波の策定

基準津波の策定位置における最高水位及び最低水位

200 21도	基準津波の策定位置		
波源	最大水位上昇量	最高水位 ^{※1,3}	
基準津波 A	5.44m	T.P.+5.7m	
基準津波 B	3.55m	T.P.+3.9m	
基準津波 C	4.46m	T.P.+4.8m	
基準津波 D	3.73m	T.P.+4.0m	
基準津波 E	3.91m	T.P.+4.2m	
基準津波 F	3.90m	T.P.+4.2m	
基準津波 G	3.84m	T.P.+4.1m	
基準津波 H	3.57m	T.P.+3.9m	
基準津波丨	4.50m	T.P.+4.8m	
基準津波 J	4.91m	T.P.+5.2m	
基準津波 K	4.12m	T.P.+4.4m	
基準津波L	3.72m	T.P.+4.0m	

【水位上昇側】

【水位下降側】

: 小 : 百	基準津波の策定位置	
次 源	最大水位下降量	最低水位 ^{※2,3}
基準津波 A	4.89m	T.P5.1m
基準津波 B	4.10m	T.P4.3m
基準津波 C	4.32m	T.P4.5m
基準津波 D	4.19m	T.P4.4m
基準津波 E	4.89m	T.P5.1m
基準津波 F	4.87m	T.P5.1m
基準津波 G	4.88m	T.P5.1m
基準津波 日	4.12m	T.P4.3m
基準津波	4.37m	T.P4.6m
基準津波 J	4.48m	T.P4.7m
基準津波 K	4.99m	T.P5.2m
基準津波L	4.60m	T.P4.8m

※1:朔望平均満潮位(T.P.+0.26m)を考慮している。

※2:朔望平均干潮位(T.P.-0.14m)を考慮している。

※3:地殻変動量については、解析上の初期条件として考慮しているものの、最高水位及び最低水位に加算・減算していない。

21

基準津波の策定位置

(4) 基準津波と既往津波から推定される津波高との比較

1. i	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1)	基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2)	基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3)	基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4)	基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5)	基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	b. 波源設定の考え方及び解析条件等の比較 (STEP2) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	c. 数値シミュレーション結果の比較(STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6)	基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. 1	積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. ł	補足説明資料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
(1)	基準津波の最大水位上昇量分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2)	行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3)	行政機関との断層パラメータの比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4)	津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・	06
. 7		
参考	文献 ••••••••••••••••••••••••••••	16

a. 基準津波と既往津波から推定される津波高との比較

比較対象範囲

○基準津波が適切に選定されていることを確認するため, 泊発電所の敷地周辺を対象に,「基準津波による水位」と「津波痕跡高及びイベン ト堆積物[∗]の分布標高」を比較する。

○なお,基準津波は,敷地に対して最も大きな影響を及ぼす波源として選定しているため,敷地周辺を対象に比較を実施する。

※:本資料において、津波堆積物の可能性が否定できない以下のイベント堆積物を、イベント堆積物という(令和6年6月11日審査会合資料1-1 P106~130参照)。

>「当社の調査によるイベント堆積物(MY-1, MY-2, SR-1地点)」

>「北海道 (2013) の調査による津波又は高潮起源の可能性を示唆するとされているイベント堆積物 (KY-07地点)」

>「川上ほか (2015) において津波堆積物の識別基準を満たさないとされているものの, 津波堆積物の可能性が否定できないイベント堆積物」

a. 基準津波と既往津波から推定される津波高との比較

基準津波と既往津波から推定される津波高の比較結果(敷地周辺)

 ○泊発電所の敷地周辺を対象に、「基準津波による水位[※]」と「津波痕跡高及びイベント堆積物の分布標高(令和6年6月11日審査会合資料 1-1 P25参照)」を比較した結果、いずれの地点においても「基準津波による水位の最大値」が「津波痕跡高及びイベント堆積物の標高」 を上回っていることを確認した。
 ○また、泊発電所の敷地近傍である岩内平野においては、更に詳細に「基準津波による水位」と「イベント堆積物の分布標高」の比較を実施

した(次頁以降参照)。

【敷地周辺における「基準津波による水位」と「津波痕跡高及びイベント堆積物の分布標高」の比較結果】

a. 基準津波と既往津波から推定される津波高との比較

岩内平野におけるイベント堆積物の整理結果

- ○岩内平野における「イベント堆積物の分布標高」を下表のとおり整理した。
 - 当社の調査によるイベント堆積物(MY-1, MY-2, SR-1地点)
 - ▶ 北海道 (2013)の調査による津波又は高潮起源の可能性を示唆するとされているイベント堆積物 (KY-07地点)
 - ▶ 川上ほか (2015) において津波堆積物の識別基準を満たさないとされているものの, 可能性が否定できないイベント堆積物 (全10地点)

【岩内平野におけるイベント堆積物の分布標高】

地点		標高	層厚	年代
当社調査	MY-1	-0.69m	5cm	BC3250~
	MY-2	-0.19m	13cm	AD1150~AD1780
	SR-1	0.50m	19cm	BC3030~AD1330
北海道 (2013)	KY-07	約−3.2m	数cm	約7000年前
川上ほか(2015) (北海道(2013) が更新されたもの)	KYW-40 (KY-01)	-1.53m	5cm	600~1600年前
	KYW-14 (KY-03)	1.39m	5cm	1900~4000年前
	KYW-21 (KY-04)	0.7m	5cm	1900~4000年前
	KYW-20 (KY-05)	1.54m	10cm以下	1900~4000年前
川上ほか(2015)	KYW-6	1.3m	数mm以下	文献に記載無
	KYW-8	1.15m	数mm以下	文献に記載無
	KYW-10	0.9m	数mm以下	文献に記載無
	KYW-12	1.8m	数mm以下	文献に記載無
	KYW-13	2.5m	数mm以下	文献に記載無
	KYW-39	0.3m	5cm以下	文献に記載無

【岩内平野におけるイベント堆積物の位置図】 (●当社,●北海道(2013),●川上ほか(2015))

※各地点における最も標高の高いイベント堆積物の値を記載

a. 基準津波と既往津波から推定される津波高との比較

基準津波とイベント堆積物の比較結果(岩内平野)

○岩内平野における「基準津波による水位」と「イベント堆積物の分布標高」を比較した結果,いずれの地点においても「基準津波による水位の最大値」が「イベント堆積物の標高」を大きく(8m以上)上回っていることを確認した(下図参照)。
 > 参考として,現在の地形ではあるものの,岩内平野における基準津波の遡上解析を実施した結果を次頁に示す。

○敷地周辺における比較結果 (P25参照) 及び岩内平野における比較結果 (上図参照)より,「基準津波による水位」は,「津波痕跡高及びイ ベント堆積物の分布標高」を十分に上回っていることを確認した。

参考資料

岩内平野における基準津波の浸水域について(1/2)

○現在の地形ではあるものの、岩内平野における基準津波の遡上解析を実施した結果、イベント堆積物が確認された地点は、概ね基準津波により浸水することを確認できた(下図参照。ただし、KY-07、KYW-20及びKYW-21地点を除く)。
 ○現在の地形では基準津波による浸水域に含まれなかった地点については、以下のとおり考察した。

▷ KY-07地点 :北海道 (2013)では、「標高-3.2m付近に約7,000年前のイベント砂層が認められているが、その層準は縄文海進の高 頂期に一致し、内湾であった岩内平野に海水と共に海由来の堆積物が最も流入しやすい条件下にあったと推定される」 とされており、イベント堆積物が堆積した当時の地形で基準津波による遡上を仮定すると、基準津波により浸水すると推 定される。

▷ KYW-20及びKYW-21地点:イベント堆積物が堆積した当時の地形で基準津波による遡上を仮定すると、基準津波により浸水すると推定される(次 頁参照)。

(岩内平野における浸水域が大きい基準津波(波源A,健全地形モデル)の例)

参考資料

岩内平野における基準津波の浸水域について(2/2) KYW-20及びKYW-21地点

○前頁に示すとおり、現在の地形に基づき岩内平野における基準津波の遡上解析を実施した結果、KYW-20及びKYW-21地点は、基準津波による浸水域に含まれなかった。これは、現在の地形では、基準津波の遡上経路に砂丘があることが主な要因と考えられる(左下図参照)。
 ○北海道(2013)及び北海道立総合研究機構(2013)では、岩内平野の砂丘は海側へ成長するとされており、砂丘の成長速度を考慮した各年代の汀線が示されている(右下図参照)。また、藤原(2015)では、砂丘は形成初期には低く、次第に高くなっていくとされている。
 ○KYW-20及びKYW-21におけるイベント堆積物の堆積年代(1900~4000年前)を踏まえると、イベント堆積物が堆積した当時の汀線は、現在よりもKYW-20及びKYW-21地点の近くに位置していたと考えられる。

○以上のことから、イベント堆積物が堆積した当時の地形にて基準津波による遡上を仮定すると、津波の遡上経路にある砂丘は現在よりも小さく、KYW-20及びKYW-21地点は現在よりも汀線に近かったことから、KYW-20及びKYW-21地点も浸水すると推定される。

b. 比較的層厚が大きい津波堆積物の考察

1. 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 9
(3) 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 23
a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 30
C. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 39
b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 42
c. 数値シミュレーション結果の比較 (STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 72
3. 補足説明資料 ······	••• 89
(1) 基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 90
(2) 行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	••• 94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••102
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••106
参考文献 ••••••••••••••••••••••••••••••••••••	•••116

b. 比較的層厚が大きい津波堆積物の考察

概要(1/2)

- ○令和6年6月11日の審査会合にて、「最新知見を反映した場合においても、既往津波を大きく超える巨大な津波を示す津波堆積物は確認されてないという評価結果に見直しは生じなかった」ことを説明している。
- ○その際, 泊発電所の敷地周辺以南 (奥尻島を含む)において, 比較的層厚が大きい津波堆積物 (例: 熊石鮎川64cm) が観察されていること について確認があったことから,「比較的層厚が大きい (約50cm以上) 津波堆積物」について考察した。

b. 比較的層厚が大きい津波堆積物の考察

b. 比較的層厚が大きい津波堆積物の考察

【考察】 津波堆積物の分布(1/2) 層厚「数cm~約20cm」の津波堆積物

○川上ほか (2015) では「①貝取潤及び④大安在浜の沿岸」並びに「③姫川河口の氾濫原」にて,東大地震研 (2017) では「②平浜の沿岸」 にて,1741年 (渡島西岸) 津波が起源と推定される堆積物が観察されており,層厚は概ね「数cm~約20cm」である。

※1:川上ほか (2015) にて, 層厚25cm未満の砂質シルト層に挟まれた礫・砂の層が, 1741年 (渡島西岸) 津波が起源の堆積物と判断されている。 ※2:川上ほか (2015) にて, 火山灰直上に配列した直径10cm程度の円礫が, 1741年 (渡島西岸) 津波が起源の堆積物と判断されている。

★:津波堆積物調査地点 (数値は津波堆積物の層厚)

33

b. 比較的層厚が大きい津波堆積物の考察

【考察】 津波堆積物の分布(2/2) 層厚「約50cm以上」の津波堆積物

○⑤熊石鮎川, ⑥五厘沢及び⑦ワサビヤチ^{**}は, 藤原(2015)にて津波堆積物の層厚が大きくなりやすいとされている以下 i ~iiiの地形的特徴に該当することから, 層厚50cm以上の津波堆積物が確認されたと推定される(詳細は下図のとおり)。

▶ 特徴 i : 流速や浸水深が急減する地形 ▶ 特徴 ii : 谷地形等, 堆積物を溜める地形 ▶ 特徴 iii : 堆積物の供給源が浸水経路上に豊富にある地形

※1:1741年 (渡島西岸)津波が起源の堆積物ではないが、50cmを超える層厚の津波堆積物が確認されていることを踏まえ、参考として分布を考察した。 ※2:谷の斜面で津波の流速及び浸水深さが急減した結果、斜面基部に分布する津波堆積物の層厚が大きくなったと推定される(上記特徴i)。

c. 既往津波から推定される津波高のまとめ

1. 1	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1)	基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2)	基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3)	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4)	基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5)	基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	c. 数値シミュレーション結果の比較 (STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6)	基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. ₹	漬丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. ‡	捕足説明資料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
(1)	基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2)	行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3)	行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4)	津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
参考了	文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16

c. 既往津波から推定される津波高のまとめ

既往津波から推定される津波高(まとめ)

【a. 基準津波と既往津波から推定される津波高との比較】
○基準津波が適切に選定されていることを確認するため、泊発電所の敷地周辺を対象に、「基準津波による水位」と「津波痕跡高及びイベント 堆積物の分布標高」を比較した。

○泊発電所の敷地周辺において, いずれの地点においても「基準津波による水位の最大値」が「津波痕跡高及びイベント堆積物の標高」を上 回っていることを確認した。

○また, 泊発電所の敷地近傍である岩内平野においては, いずれの地点においても「基準津波による水位の最大値」が「津波痕跡高及びイベント堆積物の標高」を大きく(8m以上)上回っていることを確認した。

○以上より、「基準津波による水位」が「津波痕跡高及びイベント堆積物の分布標高」を十分に上回っていることを確認した。

【b. 比較的層厚が大きい津波堆積物の考察】 〇泊発電所の敷地周辺以南 (奥尻島を含む) で確認された「比較的層厚が大きい (約50cm以上) 津波堆積物」について, 考察を実施した。

○比較的層厚が大きい(約50cm以上)津波堆積物が確認されている場所は,藤原(2015)にて津波堆積物の層厚が大きくなりやすいとされて いる以下 i ~iiiの特徴に該当する地形であった。

- ▶ 特徴 i:流速や浸水深が急減する地形
- > 特徴ii:谷地形等, 堆積物を溜める地形
- ▶ 特徴iii:浸水経路上に堆積物の供給源が豊富にある地形

○したがって、比較的層厚が大きい(約50cm以上)津波堆積物は、地形的要因により形成されたものと推定される。
1. 基準津波の策定

(5) 基準津波と行政機関による津波評価との比較

1. 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3) 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
C. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
c. 数値シミュレーション結果の比較(STEP3)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6) 基準津波の策定のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. 補足説明資料 ••••••	89
(1) 基準津波の最大水位上昇量分布 ······	90
(2) 行政機関の検討概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
参考文献 ••••••••••••••••••••••••••••••••••••	16

基準津波の策定 1.

(5) 基準津波と行政機関による津波評価との比較

検討方針・検討フロー・検討結果

【検討方針】

○行政機関では、「地震に伴う津波」を対象に検討している。

○泊発電所の基準津波は、「日本海東縁部に想定される地震に伴う津波」と「陸上地すべり(川白)に伴う津波」を組合せた津波である。 ○以上のことから,基準津波の基となる「日本海東縁部に想定される地震に伴う津波」を対象として,波源設定の考え方及び解析条件等の 比較を実施し、「日本海東縁部に想定される地震に伴う津波」が安全側の設定・評価結果となっていること※を確認する。

○そのうえで.基準津波が行政機関による津波評価を上回ること*を確認する。

※「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則の解釈 別記3」(P8参照)を踏まえ確認する。

【検討フロー】 断層パラメータ 数値シミュレーション結果 断層モデル 《a. 比較対象の選定 (STEP1) 》 平均すべり量*1 M...*1 防潮堤前面(水位上昇量)*2 〇日本海に 断層モデ 10.20m 考えられる 13.44m 《b. 波源: STEP3で比較 ○「日本海」 シミュレーション結果 した行政権 **と前面 (水位上昇量)** *2 「日本海頭 が安全側 4.05m 4.29m 《c. 数値シ 4.87m O^rSTEP17 4.76m の数値シ ○「日本海」 4.72m た行政機 3.92m 「日本海頭 果の方が 5.62m \bigcirc \mathcal{C} 2.53m

> り量」のみ例示した。 ※2:全評価項目を比較している(P49参照)が,本頁では「防潮堤前面(水位上昇量)」のみ例示した。 ※3:「日本海東縁部に想定される地震に伴う津波」の断層バラメータを超える数値であるが、適用不要であることを確認している(P44~47参照)。

【検討結果】

おいて津波評価を実施している行政機関の断層モデルのつち, ル位置及び地震規模の大きさから泊発電所への影響が大きいと る行政機関を,比較対象として選定する。				日本海東組 される地震	縁部に想定 に伴う津波	8.22	6.00m	
	J			基準	津波		同上	
安定の考え方及び解析条件等の比較 (STEP2) 》 「最後部に想定される地震に伴う津波 と「STEP1で選定						S	TEP2で比較	
機関」の断層パラメータを比較し、その比較結果から 東縁部に想定される地震に伴う津波」の断層パラメータ				断層:	モデル	断/ M _w ^{※1}	ア均すべり量 ^{*1}	数值: 防潮場
に設定できていることを確認する。				国十态通省	F12断層	7.40	3.71m	
	1			ほか	F14断層	7.80	6.00m	
/ミュレーション結果の比較(STEP3)》 「翌史」た行政機関・というまされた影響エデルを用いて、決決		行政		(2014)	F15断層	7.80	6.00m	
.送走した1100歳頃」より公表された断層モナルを用いて、津波 ミュレーションを実施する。		機関		北海道	F12断層	7.50	3.71m	
東縁部に想定される地震に伴う津波」と「STEP1において選定し 期」の決決の数値シミュレーション結果を比較し、その比較から		の断	STEP1 で選定		F14断層①	7.92	6.00m	
関」の年後の数値シミュレーション結果を比較し、その比較がら 東縁部に想定される地震に伴う津波」の数値シミュレーション結		層モゴ		(2017)	F14断層2	7.89	7.50m ^{*3}	
,安全側の評価結果となっていることを確認する。		テル			F15断層	7.92	6.00m	
5. 基準津波が行政機関による津波評価を上回ることを確認する。				秋田県 (2016)	海域A+B+C 連動モデル	8.69* ³	8.10m ^{*3}	
※1:全断層バラメータを比	較して	ている(3	。 章 (3) 行政	- 機関との断層パラ	- メータの比較 (P10)	- 3~105) 参照		 平均すべ

1. 基準津波の策定(5) 基準津波と行政機関による津波評価との比較 a. 比較対象の選定(STEP1)

6 6 9 (2)(3) 17 (4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 23 24 b. 比較的層厚が大きい津波堆積物の考察 ······ - 30 -35 3. 補足説明資料 ······ 89 (1)(2) $(\mathbf{3})$ (**4**)参考文献 ・・・・・・・・・・・・・・・・

行政機関の断層モデルの整理

○日本海において津波評価を実施している行政機関の断層モデルを対象に,断層モデル位置及び地震規模を整理した[※]。 ※各行政機関の検討概要は「3章(2) 行政機関の検討概要(P95~101)」を参照

行政機関の断層モデルの	整理結果 · · · · · · · · · · · · · · · · · · ·	<mark>黄ハッチング:</mark> 比較対象として選定した行政機関の断層モデル						
行政機関	断層モデル位置	地震規模	検討概要の参照先					
国土交通省ほか(2014)*	北海道南西沖など※	M _w 7.8*	P95					
北海道 (2017) *	北海道南西沖など※	M _w 7.9*	P96					
青森県 (2021)	青森県西方沖	M _w 7.9	P96					
秋田県 (2016)	青森県西方沖~佐渡島北方沖	M _w 8.69	P97					
山形県 (2014)	佐渡島北方沖	(マク゛ニチュート・8.5)	P97					
新潟県 (2023)	新潟県北東沖など	M _w 7.63	P98					
富山県 (2012)	糸魚川沖など	(マク゛ニチュート・8.0)	P98					
石川県 (2012)	佐渡島北方沖など	M _w 7.99	P99					
福井県 (2012)	佐渡島北方沖など	M _w 7.99	P99					
鳥取県 (2012)	佐渡島北方沖など	M _w 8.16	P100					
島根県(2017)	隠岐北西沖など	M _w 6.9	P100					
山口県 (2015)	見島北方西部など	M _w 7.16	P101					

※「国土交通省ほか(2014)」及び「北海道(2017)」の断層モデルのうち、泊発電所に近い位置の断層モデルである F12断層、F14断層及びF15断層を対象に整理した。

想定地震の震源域・規模 (地震本部(2003)より引用)

【整理結果】 〇「国土交通省ほか(2014)」及び「北海道(2017)」は,泊発電所に近い位置(北海道南西沖)に断層モデルを検討している。 〇「秋田県(2016)」は,最も地震規模の大きい断層モデル(M』8.69)を検討しており,断層モデル位置も泊発電所から比較的近い。

行政機関の断層モデルの選定

【選定結果】

○日本海において津波評価を実施している行政機関の断層モデルのうち,断層モデル位置及び地震規模の大きさから「国土交通省ほか(2014)」、「北海道(2017)」及び「秋田県(2016)」の断層モデルが泊発電所への影響が大きいと考えられる(前頁参照)。

○以上より、泊発電所への影響が大きいと考えられる「国土交通省ほか(2014)※」、「北海道(2017)※」及び「秋田県(2016)」を比較対象として選定した。

※「国土交通省ほか(2014)」及び「北海道(2017)」の断層モデルのうち, 泊発電所に近い位置の断層モデルであるF12断層, F14断層及びF15断層を比較対象として選定した。

1. 基準津波の策定(5) 基準津波と行政機関による津波評価との比較 b. 波源設定の考え方及び解析条件等の比較(STEP2)

1. 麦	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1)	基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2)	基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3)	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4)	基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5)	基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
	c. 数値シミュレーション結果の比較(STEP3) ······	48
	d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6)	基準津波の策定のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
ų — <i>ų</i>		
2 積	青丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
—• 1,		
3 補	指 足説明資料 ······	89
(1)	************************************	90
(2)	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	94
(2)	「1」 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	02
(О) (Л)	11以(())()()()()()()()()()()()()()()()()(02
(=)	牛似い我に/ ヘーレ / コ / に肉 / る週ムの街互がついえて示	00
		16
砂芍乂		01

b. 波源設定の考え方及び解析条件等の比較(STEP2)

M_w及び平均すべり量の比較結果

43

断層パラメータ

M_w^{※1} 平均すべり量^{※1}

STEP2で比較

断層パラメータ

6.00m

平均すべり量^{*1}

3.71m

6 00m

6.00m

3.71m

6.00m

7.50m

6.00m

8.10m

8.22

M...*1

7 40

7.80

7.80

7.50

7.92

7.89

7.92

8.69

「日本海東縁部に想定される地震に伴う津波」の設定の妥当性

「日本海東縁部に想定される地震に伴う津波」の設定の妥当性

b. 波源設定の考え方及び解析条件等の比較(STEP2)

「北海道(2017)のF14断層②」の平均すべり量について

○「北海道 (2017) のF14断層②」と「日本海東縁部に想定される地震に伴う津波」の平均すべり量の設定方法は、以下のとおりである。

【日本海東縁部に想定される地震に伴う津波】

- ▶ 国土交通省ほか (2014) では、「すべり量は内陸の地震と同様にマグニチュードが大きくなると飽和し、データのばらつきを考慮して、平均すべり量は最大で6.0m、大すべり域のすべり量はその2倍に設定する」とされている。
- ▶ 上記の国土交通省ほか (2014)の知見に加え, Murotani et al. (2015), 地震本部 (2016) 及び土木学会 (2016) に基づき, 平均すべり量を6.00m, 大すべり域のす べり量を12.00mに設定している (詳細は次頁参照)。

【北海道(2017)のF14断層②】

▶ 北海道 (2017) では、「F14断層②について、北海道南西沖地震の既存研究の再現性の高いモデルでは、南部のセグメント全体が大すべり域であることから、国土交通省ほか (2014) におけるF14断層を基に、南部のセグメント全体を大すべり域として配置した断層モデル」とされている。

「日本海東縁部に想定される地震に伴う津波」の断層パラメータ

断層パラメータ	日本海東縁部 (L=320km)	設定根拠 令和4年5月27日審査会合において説明
平均すべり量 D	6.00m	Da:以下の知見より設定
すべり量 (背景領域) D _b	4.00m	▶ 世界の内陸で発生した地震の最大地表変位量 (Murotani et al. (2015)) ▶ スケール・グリルにおける見ますがは長 (図上な通常(ほか (2014)) 地震す朝 (2016) ます単合 (2016))
すべり量(大すべり域)D _a	12.00m	 ▶ 既往津波の再現性が確認されている断層モデルにおける最大すべり量の最大値(土木学会(2016)) ▶ した津波の再現性が確認されている断層モデルにおける最大すべり量の最大値(土木学会(2016)) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

北海道(2017)の断層パラメータ

断層パラメータ		F14團	所層②		沙宁相物			
	セグメント①	セグメント②	セグメント③	セグメント④	設定			
平均すべり量 D		7.5	Om					
すべり量(背景領域)	6.00m	6.00m	6.00m	-	北海道 (2017) による設定			
すべり量 (大すべり域)	-	-	-	12.00m				

○北海道 (2017) のF14断層②の平均すべり量 (7.50m)は、基となる国土交通省ほか (2014)の知見 (すべり量はマグニチュードが大きくなると飽和し、ばらつきを考慮して、平均すべり量は最大で6.0mで設定)に対して大きな設定であることから、「日本海東縁部に想定される地震に伴う津波」の断層パラメータに適用しない。

▶ なお、北海道 (2017) のF14断層②の設定については、「日本海東縁部に想定される地震に伴う津波」の断層パラメータに適用しないものの、「c. 数値シミュレーション結果の比較 (STEP3)」においてその影響がないことを確認している (P58~62参照)。

1. 基準津波の策定(5) 基準津波と行政機関による津波評価との比較 b. 波源設定の考え方及び解析条件等の比較(STEP2)

参考:「日本海東縁部に想定される地震に伴う津波」のすべり量の設定方法

一部修正(R4/5/27審査会合)

○国土交通省ほか(2014)では、すべり量の設定について、以下のとおりとされている。

- 日本海東縁部で発生した1964年新潟地震,1983年日本海中部地震及び1993年北海道南西沖地震の既存の解析結果による平均 すべり量が4.5m程度となったため、内陸地震の関係式と同様に地震規模が大きくなると断層すべり量が飽和するとして、日本海東縁部 で発生した既往地震の平均すべり量4.5mで頭打ちとなる関係式(µ式)を設定した。
- 既往研究による過去の地震の平均すべり量にはばらつきがみられ、防災上の観点からは、より大きなすべり量の断層モデルを想定対象 とすることが重要であるため、日本海側で解析結果のある最大規模の地震(1983年日本海中部地震、1993年北海道南西沖地震)の 既往断層モデルのすべり量のばらつきを考慮し、平均すべり量にばらつきの標準偏差(σ)1.5mを加えたモデルも検討した。
 ホナベルポのナベル号は平均すべいるの2倍とする
- ▶ 大すべり域のすべり量は平均すべり量の2倍とする。

○以上から, 平均すべり量は6mで飽和する(上記「σ式におけるM_wとすべり量の関係」を参照)ため, 大すべり域のすべり量は最大12mとなる。

※国土交通省ほか (2014) に加え, Murotani et al. (2015), 地震本部 (2016) 及び土木学会 (2016) に基づき, 大すべり域のすべり量を12mに設定している (詳細は令和4年5月27日審査会合資料参照)。

b. 波源設定の考え方及び解析条件等の比較(STEP2)

「秋田県 (2016)の海域A+B+C連動モデル」のM_w及びすべり量について (1/2)

○秋田県 (2016)の断層モデルでは、地震発生層厚さ (46km) に基づき、M_w (8.69) 及び平均すべり量 (8.10m)を設定していることから、地震発生層厚さに関して整理する。

○秋田県(2016)の断層モデルについて、大竹ほか編(2002)及び地震本部(2003)に示される日本海東縁部の地質構造と比較した。

【比較結果】

○大竹ほか編 (2002) によると日本海東縁部は太平洋側と異なりプレートの沈み込みは生じていないと考えられること,及び,地震が発生する 深さは概ね15km以浅であることから,秋田県 (2016) の断層モデル (地震発生層厚さ46km) のような地質構造は見られない。

2. 想定地震の設定

2.1 全想定地震の概要

今回の地震被告想定における想定地震の基本的な考え方は、平成 23 年度に行われた秋田県地震 被害想定調査検討委員会における意見を反映したものである。その基本的な考え方は次のとおり である。

- 東日本大震災の経験を考慮すると、これまで想定していた地震の規模を超えた条件での想定が必要と考える。
- 2) 濃源断層の評価は、地震調査研究推進本部での研究成果を活用するが、そこでは地表に地震断層が表れていない地震(仙北地磁)についての検討がなされていない。しかし、地表に地震断層が表れていない地震であっても強震動をもたらすことは平成12 年島取県西部地震、平成19 年新潟県中越地震及び岩手・宮城内陸地震の例でも明らかである。さらに、平成23 年3月11日以降は、秋田県内でこれまで地震活動が低調であった場所でも、局所的に強い揺れを伴う浅い地震の活動が活発になっている。したがって、明瞭な断層地形が認められない地域の地下で発生する地震の想定も必要である。
- 3) 地震の震動が波として震源の周囲に伝わっていくことを考慮する場合、県境に隣接した地域で発生する地震についても考慮が必要である。
- 4) 運動地震は、東日本大震災の発生機構を考慮して導入した。この運動地震については、 陸域の地震、海域の地震の両方について想定する。
- 5) 海域については、日本海東緑部プレート境界の地震について、単独地震、連動地震を 想定する。

以上の考え方に基づいて、平成24年度の地震・地質専門部会、津波専門部会において、想定地 震を検討した結果、表-2.1.1、表-2.1.2及び図-2.1.1、図-2.1.2に示すような想定地震(陸域21 パターン+海域6パターン=全27パターン)を設定した。

※断層パラメータに関する説明は、秋田県 (2013) のみに記載されており、秋田県 (2016) はこれを用いている。

b. 波源設定の考え方及び解析条件等の比較(STEP2)

「秋田県 (2016)の海域A+B+C連動モデル」のM_w及びすべり量について (2/2)

【秋田県 (2016)の断層モデルに対する当社の考え】 〇日本海東縁部の地震発生層厚さは上限があるものの、秋田県 (2016)の断層モデルでは、地震発生層厚さの上限を考慮せずに46kmと大 きく設定している。

○また、この地震発生層厚さ46kmに基づき設定されたM_w(8.69)及び平均すべり量(8.10m)[※]についても、大きな設定であると考えられる。 ※平均すべり量は、上記に加え、国土交通省ほか(2014)に基づくと6mで飽和する(P45参照)と考えられることからも、大きな設定であると考えられる。

○したがって, 地震発生層厚さ(46km), M_w(8.69) 及び平均すべり量(8.10m) については,「日本海東縁部に想定される地震に伴う津波」の 断層パラメータに適用しない。

▶ なお,秋田県(2016)の断層モデルの設定については、「日本海東縁部に想定される地震に伴う津波」の断層パラメータに適用しないものの、「c. 数値シミュレーション結果の比較(STEP3)」においてその影響がないことを確認している(P64~66参照)。

6 6 9 (2)(3) 17 (4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 23 24 b. 比較的層厚が大きい津波堆積物の考察 ······ 30 -35 37 -39 3. 補足説明資料 ······ 89 (2) $(\mathbf{3})$ (**4**)参考文献 ・・・・・・・・・・・・・・・・・

c. 数値シミュレーション結果の比較(STEP3)

行政機関の断層モデルとの比較結果

○前頁において選定した行政機関より公表された以下の断層モデルを用いて、津波の数値シミュレーションから泊発電所の津波評価を実施した。

- 国土交通省ほか (2014) のF12断層, F14断層及びF15断層※
- 水海道(2017)のF12断層, F14断層①, F14断層②及びF15断層※
- ▶ 秋田県 (2016)の海域A+B+C連動モデル※

※行政機関の津波評価の詳細は、次頁以降を参照

行政機関による津波評価に基づく津波の数値シミュレーション結果(健全地形モデル)

黄ハッチングは評価項目の最大ケースである。

	国土	交通省ほか (2)	014)		北海道	(2017)		秋田県 (2016)	口士海市绿如仁相宁		
評価項目	F12断層 F14断層		F15断層	F12断層	F14断層①	F14断層②	F15断層	海域A+B+C 連動モデル	される地震に伴う津波	基準津波	
	水位変動量, 時間	水位変動量,時間	水位変動量, 時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	
防潮堤前面 (上昇側)	4.05m	4.29m	4.87m	4.76m	4.72m	3.92m	5.62m	2.53m	10.20m	13.44m	
3号炉取水口 (上昇側)	2.47m	3.49m	3.37m	2.78m	3.70m	3.81m	3.82m	2.15m	8.50m	10.45m	
1号及び2号炉 取水口 (上昇側)	2.50m	3.44m	3.37m	2.58m	3.77m	3.55m	3.76m	2.15m	8.63m	9.34m	
放水口 (上昇側)	2.57m	3.54m	3.13m	2.59m	3.95m	2.66m	3.35m	1.78m	9.20m	10.91m	
「貯留堰を 下回る時間」	Os	Os	Os	Os	Os	Os	16s	Os	706s	721s	

【比較結果】

○「日本海東縁部に想定される地震に伴う津波」が、「国土交通省ほか(2014)」、「北海道(2017)」及び「秋田県(2016)」より公表された断層モデルを 用いた津波の数値シミュレーション結果を上回り、安全側の評価となっていることを確認した。

○そのうえで,基準津波が「国土交通省ほか(2014)」,「北海道(2017)」及び「秋田県(2016)」より公表された断層モデルを用いた津波の数値シミュ レーション結果を上回ることを確認した。 c. 数値シミュレーション結果の比較(STEP3)

【行政機関の津波評価結果】	
▶ 国土交通省ほか (2014)の断層モデルを用いた津波評価	:P51~56参照
≻ 北海道 (2017) の断層モデルを用いた津波評価	:P58~62参照
≻ 秋田県 (2016) の断層モデルを用いた津波評価	:P64~66参照

国土交通省ほか (2014) の断層モデルを用いた津波評価 (1/6)

一部修正(H26/12/5審査会合)

【評価方法】

○国土交通省ほか (2014) では、複数のセグメントからなる断層モデルを設定しており、セグメント毎に大すべり域の位置の不確かさ (大すべり 右側、大すべり中央及び大すべり左側等)を考慮したパラメータスタディを実施している。

○以上を踏まえ,国土交通省ほか(2014)より公表された断層モデルのうち,泊発電所に近い位置の断層モデルであるF12断層,F14断層及びF15断層を用いて,大すべり域の位置の不確かさを考慮したパラメータスタディを実施する。

大すべり域の位置の隣接ケース(4セグメントの場合の設定例)

国土交通省ほか (2014) の断層モデルを用いた津波評価 (2/6)

一部修正(H26/12/5審査会合)

【断層モデル】

○国土交通省ほか(2014)より公表された断層モデル(F12断層, F14断層及びF15断層)を用いて, 津波の数値シミュレーションを実施する。

断層 パラメータ	F12断層				F14	断層		F15断層			
町層ハノクーダ	セグメント①	セグメント②	セグメント③	セグメント①	セグメント②	セグメント③	セグメント④	セグメント①	セグメント②	セグメント③	セグメント④
モーメント マグニチュート゛ M _w		7.40			7.8	80		7.80			
合計断層長さし		73.0km			175	.0km		177.0km			
断層長さ	24.0km	29.3km	19.7km	43.3km	57.1km	22.5km	51.9km	45.2km	57.1km	22.5km	51.9km
断層幅 ₩	18.7km	18.7km	18.7km	20.3km	20.3km	20.3km	16.6km	20.1km	20.1km	20.1km	16.4km
平均すべり量 D	3.71m				6.0	Om	-	6.00m			
すべり量(背景領域)	2.65m	2.84m	2.49m	4.36m	4.36m	4.24m	4.31m	4.67m	4.36m	4.24m	4.31m
すべり量(大すべり域)	7.42m	7.42m	7.42m	12.00m	12.00m	12.00m	12.00m	12.00m	12.00m	12.00m	12.00m
断層面上縁深さ d		1km			11	ſm		1km			
走向 θ	156°	161°	177°	195°	192°	192°	167°	173°	192°	192°	167°
傾斜角 ō	45°	45°	45°	45°	45°	45°	60°	45°	45°	45°	60°
 すべり角 λ	62°	65°	79°	99°	111°	111°	105°	97°	111°	111°	105°

【断層モデル諸元】

※断層パラメータは、国土交通省ほか(2014)より設定した。

国土交通省ほか (2014) の断層モデルを用いた津波評価 (3/6)

一部修正(H26/12/5審査会合)

100 km

【断層モデル図】

※記載例:大すべり域中央

国土交通省ほか (2014) の断層モデルを用いた津波評価 (4/6)

一部修正(H26/12/5審査会合)

【津波の数値シミュレーション結果(1/3)】

○国土交通省ほか (2014) の断層モデル (F12断層及びF14断層) のパラメータスタディ結果は、下表のとおりである。

	変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	3号炉取水口		
対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	利 不)	夆側)		
	大すべり域の位置 	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間		
	大すべり域右側	3.72m	2.22m	2.16m	1.72m	-2.46m	Os		
	大すべり域中央	3.53m	2.30m	2.18m	2.00m	-2.50m	Os		
F12断層	大すべり域左側	3.80m	2.33m	2.29m	2.00m	-2.02m	Os		最大ケースとして選定 (P56へ)
	大すべり域隣接LLR	3.79m	2.45m	2.35m	2.57m	-2.38m	Os		
	大すべり域隣接LRR	4.05m	2.47m	2.50m	1.72m	-2.34m	Os	┝→	

【F12断層】

※黄ハッチングは評価項目の最大ケースである。

	変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉取水口			
対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	(TI	夆側)		
	大すべり域の位置 	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間		
	大すべり域右側	3.95m	3.47m	3.44m	3.06m	-2.59m	Os	┝→	
	大すべり域中央	3.86m	3.49m	3.31m	2.71m	-2.63m	Os		
	大すべり域左側	3.73m	3.34m	3.17m	2.55m	-2.71m	Os		
F14断層	大すべり域隣接LLLR	3.79m	3.41m	3.26m	2.55m	-2.61m	Os		<mark>最大ケースとして選定</mark> (P56へ)
	大すべり域隣接LLRR	3.74m	3.48m	3.21m	2.55m	-2.74m	Os		
	大すべり域隣接LRLR	3.93m	3.32m	3.30m	3.54m (3.539m)	-2.73m	Os	}→	
	大すべり域隣接LRRR	4.29m	3.27m	3.28m	3.54m (3.536m)	-2.67m	Os]→	

【F14断層】

※黄ハッチングは評価項目の最大ケースである。

国土交通省ほか (2014) の断層モデルを用いた津波評価 (5/6)

一部修正(H26/12/5審査会合)

【津波の数値シミュレーション結果(2/3)】

○国土交通省ほか(2014)の断層モデル(F15断層)のパラメータスタディ結果は、下表のとおりである。

	変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口		
対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	ا م)	夆側)		
	大すべり域の位置	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間		
	大すべり域右側	4.17m	3.37m	3.37m	2.49m	-2.83m	Os	→	
	大すべり域中央	4.29m	3.18m	3.27m	2.47m	-2.84m	Os		
	大すべり域左側	3.65m	3.16m	3.19m	2.39m	-2.47m	Os		
F15断層	大すべり域隣接LLLR	3.76m	3.25m	3.30m	2.33m	-2.50m	Os		最大ケースとして選定 (P56へ)
	大すべり域隣接LLRR	3.79m	3.34m	3.30m	2.48m	-2.54m	Os		
	大すべり域隣接LRLR	4.66m	3.33m	3.24m	3.13m	-3.33m	Os	┝	
	大すべり域隣接LRRR	4.87m	3.32m	3.24m	3.12m	-3.31m	Os	┝─►	

【F15断層】

※黄ハッチングは評価項目の最大ケースである。

国土交通省ほか (2014) の断層モデルを用いた津波評価 (6/6)

一部修正(H26/12/5審査会合)

【津波の数値シミュレーション結果(3/3)】

○国土交通省ほか(2014)の断層モデル(F12断層, F14断層及びF15断層)による津波の数値シミュレーション結果は、以下のとおりである。

国土交通省ほか(2014)の断層モデル(F12断層, F14断層及びF15断層)による津波の数値シミュレーション結果

			国土交	を通省ほか (2014)						
評価項目		F12断層		F14断層	F15断層					
	水位変動量, 時間	大すべり域の位置	水位変動量, 時間	大すべり域の位置	水位変動量, 時間	大すべり域の位置				
防潮堤前面 (上昇側)	4.05m	大すべり域隣接LRR	4.29m	大すべり域隣接LRRR	4.87m	大すべり域隣接LRRR				
3号炉取水口 (上昇側)	2.47m	大すべり域隣接LRR	3.49m	大すべり域中央	3.37m	大すべり域右側				
1号及び2号炉取水口 (上昇側)	2.50m	大すべり域隣接LRR	3.44m	大すべり域右側	3.37m	大すべり域右側				
放水口 (上昇側)	2.57m	大すべり域隣接LLR	3.54m	大すべり域隣接LRLR	3.13m	大すべり域隣接LRLR				
3号炉取水口 (水位下降量) (参考値)	2.50m	大すべり域中央	2.74m	大すべり域隣接LLRR	3.33m	大すべり域隣接LRLR				
「貯留堰を 下回る時間」	Os	 (貯留堰を下回らない)	Os	 (貯留堰を下回らない)	Os	ー (貯留堰を下回らない)				

c. 数値シミュレーション結果の比較(STEP3)

北海道 (2017) の断層モデルを用いた津波評価 (1/5)

【評価方法(1/2)】

○北海道(2017)では、国土交通省ほか(2014)における大すべり域の位置の不確かさを考慮した断層モデルに対して、大すべり域を浅部の 全域に配置した断層モデルを設定している。

○これを踏まえ、北海道(2017)より公表された断層モデルのうち、泊発電所に近い位置の断層モデルであるF12断層、F14断層※及びF15断 層を用いて、浅部の大すべり域を全域に配置した津波の数値シミュレーションを実施する。

※F14断層については、北海道(2017)の検討を踏まえ、南部のセグメント全体に大すべり域を配置した津波の数値シミュレーションを実施する(詳細は次頁参照)。

大すべり域の配置の考え方

(北海道(2017)より引用)

c. 数値シミュレーション結果の比較(STEP3)

北海道 (2017) の断層モデルを用いた津波評価 (2/5)

【評価方法(2/2)】

○F12断層, F14断層①及びF15断層は, 浅部の大すべり域を全域に配置した断層モデルとする。

○上記に加え、F14断層②は、南部のセグメント全体に大すべり域を配置した断層モデル*とする。

※北海道南西沖地震の既存研究の再現性の高いモデルでは,南部のセグメント全体が大すべり域であることを踏まえ,設定したモデル。

	対象地震	F	15					
想	定地震の規模	モーメントマグニ	モーメントマグニチュード 7.8 ※					
	説明	国の報告書により設 デル F15 モデルを~ を 1 つに繋げたモデ	定された津波断層モ ベースに、大すべり域 ルを設定					
概要	波源域 と地殻 変動量	- ************************************	し 地設変動量					

北海道(2017)に一部加筆

c. 数値シミュレーション結果の比較(STEP3)

北海道 (2017) の断層モデルを用いた津波評価 (3/5)

【断層モデル】

○北海道(2017)より公表された断層モデル(F12断層, F14断層①, F14断層②及びF15断層)を用いて, 津波の数値シミュレーションを実施する。

断届パラメータ		F12断層			F14選	盾層①			F14選	所層②			F15	断層	
町増ハノメーダ	セグメント①	セグメント②	セグメント③	セグメント①	セグメント②	セグメント③	セグメント④	セグメント①	セグメント②	セグメント③	セグメント④	セグメント①	セグメント②	セグメント③	セグメント④
モーメント マク゛ニチュート゛ M _w		7.50			7.9	92			7.3	89			7.9	92	
合計断層長さし		73.0km			175	.0km			175	.0km			177	.0km	_
断層長さ	24.0km	29.3km	19.7km	43.3km	57.1km	22.5km	51.9km	43.3km	57.1km	22.5km	51.9km	45.2km	57.1km	22.5km	51.9km
断層幅 ₩	18.7km	18.7km	18.7km	20.3km	20.3km	20.3km	16.6km	20.3km	20.3km	20.3km	16.6km	20.1km	20.1km	20.1km	16.4km
平均すべり量 D	3.71m				6.0	Om			7.5	Om			*グメント① セグメント② セグメント③ セグメ 7.92 177.0km 15.2km 57.1km 22.5km 51.9 20.1km 20.1km 20.1km 16.4 6.00m 4.67m 4.36m 4.24m 4.3 2.00m 12.00m 12.00m 12.00m 12.00m 173° 192° 192° 167 45° 45° 45° 60		
すべり量(背景領域)	2.65m	2.84m	2.49m	4.36m	4.36m	4.24m	4.31m	6.00m	6.00m	6.00m	—	4.67m	4.36m	4.24m	4.31m
すべり量 (大すべり域)	7.42m	7.42m	7.42m	12.00m	12.00m	12.00m	12.00m	1	—	—	12.00m	12.00m	12.00m	12.00m	12.00m
断層面上縁深さ d		1km			11	ſm			11	ĸm			11	ſm	
走向 θ	156°	161°	177°	195°	192°	192°	167°	195°	192°	192°	167°	173°	192°	192°	167°
傾斜角 δ	45°	45°	45°	45°	45°	45°	60°	45°	45°	45°	60°	45°	45°	45°	60°
 すべり角 λ	62°	65°	79°	99°	111°	111°	105°	99°	111°	111°	105°	97°	111°	111°	105°

【断層モデル諸元】

※断層パラメータは、北海道(2017)より設定した。

北海道(2017)の断層モデルを用いた津波評価(4/5)

【断層モデル図】

F12断層

F14断層①

F14断層②

F15断層

c. 数値シミュレーション結果の比較(STEP3)

北海道 (2017) の断層モデルを用いた津波評価 (5/5)

【津波の数値シミュレーション結果】 〇北海道 (2017)の断層モデル (F12断層, F14断層①, F14断層②及びF15断層) による津波の数値シミュレーション結果は、以下のとおり である。

北海道 (2017) の断層モデル (F12断層, F14断層①, F14断層②及びF15断層) による津波の数値シミュレーション結果

 評価項目 防潮堤前面 (上昇側) 3号炉取水口 (上昇側) 1号及び2号炉取水口 (上昇側) 1号及び2号炉取水口 (上昇側) 3号炉取水口 	北海道 (2017)							
評価項目	F12断層	F14断層①	F14断層②	F15断層				
	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間				
防潮堤前面 (上昇側)	4.76m	4.72m	3.92m	5.62m				
3号炉取水口 (上昇側)	2.78m	3.70m	3.81m	3.82m				
1号及び2号炉取水口 (上昇側)	2.58m	3.77m	3.55m	3.76m				
放水口 (上昇側)	2.59m	3.95m	2.66m	3.35m				
3号炉取水口 (水位下降量) (参考値)	2.81m	3.40m	2.54m	4.07m				
「貯留堰を 下回る時間」	Os	Os	Os	16s				

c. 数値シミュレーション結果の比較(STEP3)

秋田県 (2016)の断層モデルを用いた津波評価 (1/3)

【評価方法】

○秋田県 (2013) では, <u>地震本部 (2003) による日本海東縁部の地震活動の長期評価に示される地殻構造 (下図) を参考として, 海域A, B, Cの連動を考慮した断層モデル (断層長さL) を設定し, 断層幅Wは, 断層長さLと断層幅Wの相似則から設定している[※]。
 ○秋田県 (2016) では, 最大の津波高となるモデルとして, 上記の海域A+B+C連動モデルを選定している。
 ○これを踏まえ, 秋田県 (2016) により公表された断層モデルのうち海域A+B+C連動モデルを用いて, 津波の数値シュミレーションを実施する。
</u>

※断層パラメータに関する説明は、秋田県 (2013)のみに記載されており、秋田県 (2016) はこれを用いている。

地震本部(2003)

c. 数値シミュレーション結果の比較(STEP3)

秋田県 (2016) の断層モデルを用いた津波評価 (2/3)

【断層モデル】

○秋田県 (2016) では, 連動地震として3領域の同時破壊を想定した断層モデルを設定している。 ○秋田県 (2016) より公表された断層モデル (海域A+B+C連動モデル) を用いて, 津波の数値シミュレーションを実施する。

断層パラメータ	海域A+B+C 連動モデル
モーメントマク゛ニチュート゛ M _w	8.69
断層長さ L	350km
断層幅 ₩	135km
平均すべり量 D	8.10m
断層面上縁深さ d	Okm
走向 θ	14°
傾斜角 δ	20°
すべり角 λ	90°

【断層モデル諸元】

※断層パラメータは、秋田県 (2016) より設定した。

海域A+B+C連動

c. 数値シミュレーション結果の比較(STEP3)

秋田県 (2016) の断層モデルを用いた津波評価 (3/3)

【津波の数値シミュレーション結果】 〇秋田県 (2016)の断層モデル (海域A+B+C連動モデル)による津波の数値シミュレーション結果は, 以下のとおりである。

秋田県 (2016)の断層モデル (海域A+B+C連動モデル)による津波の数値シミュレーション結果

	秋田県 (2016)
評価項目	海域A+B+C 連動モデル
	水位変動量,時間
防潮堤前面 (上昇側)	2.53m
3号炉取水口 (上昇側)	2.15m
1号及び2号炉取水口 (上昇側)	2.15m
放水口 (上昇側)	1.78m
3号炉取水口 (水位下降量) (参考値)	2.07m
「貯留堰を 下回る時間」	Os

1. 基準津波の策定(5) 基準津波と行政機関による津波評価との比較 d. 行政機関による津波評価のまとめ

1.	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1)	基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2)	基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3)	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4)	基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
ų <i>– v</i>	a 基準達波と既往達波から推定される達波高との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
		30
	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5)	1. 筑江洋波がりただではの洋波筒のよこの 其進浄波と行政機関にトス浄波評価との比較	27
()	本牛牛次C11以((ス)による)牛次計画CV113	20
	d. 山牧刈家の选足(SIEFI)	39
	D. 波源設定の考え力及び解析采件寺の応戦(STEP2) ····································	42
	C. 数値シミュレーション結果の比較(STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6)	基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2.	積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3.	補足説明資料 ••••••	89
(1)	基準達波の最大水位上昇量分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2)		94
(2)		
(3)	行政(())()の)()()()()()()()()()()()()()()()(02
(4)	津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
参考	文献 ••••••••••••••••••••••••••••••••••••	16

d. 行政機関による津波評価のまとめ

基準津波と行政機関による津波評価との比較結果(まとめ)

【比較対象の選定(STEP1)】

○日本海において津波評価を実施している行政機関の断層モデルのうち, 断層モデル位置及び地震規模の大きさから「国土交通省ほか(2014)」,「北海道(2017)」及 び「秋田県(2016)」の断層モデルが泊発電所への影響が大きいと考えられることから, これらを比較対象として選定した(P40,41参照)。

【波源設定の考え方及び解析条件等の比較(STEP2)】

- ○津波評価に大きな影響を与える断層パラメータと考えられる「M_w」及び「平均すべり量」を対象に、日本海東縁部に想定される地震に伴う津波と「国土交通省ほか (2014)」、「北海道(2017)」及び「秋田県(2016)」の断層パラメータを比較し、日本海東縁部に想定される地震に伴う津波の断層パラメータが、安全側の設定になっ ていることを確認した(P43~47参照)。
 - ▷なお、「北海道 (2017)のF14断層②の平均すべり量」は、基となる国土交通省ほか (2014)の知見に対して大きな設定であること、「秋田県 (2016)の海域A+B+C 連動モデルのM_w及び平均すべり量」は、地震発生層厚さの上限に対して大きな設定であることから、「日本海東縁部に想定される地震に伴う津波」の断層パラメータ に適用しない (「日本海東縁部に想定される地震に伴う津波」の断層パラメータに適用しないものの、下記の「数値シミュレーション結果の比較 (STEP3)」においてそ の影響がないことを確認している)。

【数値シミュレーション結果の比較 (STEP3)】

○「日本海東縁部に想定される地震に伴う津波」が、「国土交通省ほか(2014)」、「北海道(2017)」及び「秋田県(2016)」より公表された断層モデルを用いた津波の数 値シミュレーション結果を上回り、安全側の評価となっていることを確認した(P49~66参照)。

STEP3:行政機関による津波評価に基づく津波の数値シミュレーション結果(健全地形モデル)

<mark>黄ハッチング</mark>は評価項目の最大ケースである。

	国土	交通省ほか (2)	014)		北海道	(2017)		秋田県 (2016)	口士海市绿如仁相宁	
評価項目	F12断層 F14断層		F15断層	F12断層	F14断層①	F14断層②	F15断層	海域A+B+C 連動モデル	される地震に伴う津波	基準津波
	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間
防潮堤前面 (上昇側)	4.05m	4.29m	4.87m	4.76m	4.72m	3.92m	5.62m	2.53m	10.20m	13.44m
3号炉取水口 (上昇側)	2.47m	3.49m	3.37m	2.78m	3.70m	3.81m	3.82m	2.15m	8.50m	10.45m
1号及び2号炉取水口 (上昇側)	2.50m	3.44m	3.37m	2.58m	3.77m	3.55m	3.76m	2.15m	8.63m	9.34m
放水口 (上昇側)	2.57m	3.54m	3.13m	2.59m	3.95m	2.66m	3.35m	1.78m	9.20m	10.91m
「貯留堰を 下回る時間」	Os	Os	Os	Os	Os	Os	16s	Os	706s	721s

○「国土交通省ほか(2014)」、「北海道(2017)」及び「秋田県(2016)」の波源設定の考え方及び解析条件等の相違点に着目して内容を精査した上で、 基準津波は、これらの行政機関より公表された断層モデルを用いた津波高を上回ることを確認した。

1. 基準津波の策定 (6) 基準津波の策定のまとめ

1. 3	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1)	基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2)	基準津波の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3)	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4)	基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	c. 既往津波から推定される津波高のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5)	基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	b. 波源設定の考え方及び解析条件等の比較 (STEP2) ······	42
	c. 数値シミュレーション結果の比較 (STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	d 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6)	基準津波の第定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
(0)		00
2 1	唐四半良北西池の断層にトス浄波迹価	72
∠. 1	頃月十岁七日作り町宿による年次許画	1 4
2 1	祥宁书明资料	20
(1)	温に読み」でのサイン 「「「「」」では、「」」、「」、「」、」、「」、	09
(1)	※ 学洋波の取入小心上升里力巾 	90
(\mathbb{Z})		94
(3)	行政機関との断層バラメータの比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4)	津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
参考	文献	16

1. 基準津波の策定

(6) 基準津波の策定のまとめ

基準津波の策定(まとめ) (1/2)

- ○「地震に伴う津波」、「地震以外の要因に伴う津波」及び「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の津波評価結果を比較することで、敷 地に対して最も大きな影響を及ぼす波源である「組合せ評価における最大波源(水位上昇側:8波源、水位下降側:4波源)」を基準津波に選定した(左下 表参照)。
- ○基準津波の策定位置は,施設からの反射波の影響が微少となるよう,泊発電所の西方約5kmの地点(水深100m)を選定した(右下図参照)。
- ○基準津波が敷地周辺における津波堆積物等の地質学的証拠や歴史記録等から推定される津波の規模及び行政機関による津波評価を上回ることを確 認した(次頁参照)。
- ○以上のとおり、基準津波を策定し、その妥当性を確認した。

誕価佰日	健全地形モデル		防波	堤の損傷を考慮した地形モデル①	防波堤の損傷を考慮した地形モデル②防波堤の損傷を考慮した地形モデル③			
ᆎᇞᄸᇿᆸ	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ	水位上昇量	断層パラメータ
防潮堤前面 (上昇側)	13.44m	・断層パターン:6 ・波道位置: : Cの字モデル (東へ 10km) ・アスペリティ位置: : de南へ 20km ・断層面上線深さ:5km ・組合せの時間差: 115s	15.65m	- 新層パターン:7 - 波運位置:4矩形モデル(東へ15km) - アスペリティ位置:4e南へ20km - 新層面上線波さ:5km - 総合せの時間差:115s	14.98m	 断層バターン:7 速源位置:4邦形モデル(東へ15km) アスペリテイ位置:de南へ20km ・断層面上線深さ:5km ・紙合せの時間差:115s 	15.68m	- 新層パターン:7 - 波遊位置:4矩形モデル(東へ15km) - アスペリティ位置:de南へ20km - 新層面上線波さ:5km - 組合せの時間差:110s
3号炉 取水口 (上昇側)	10.45m	・新層パターン:7 - 波源位置:4紀形モデル(東へ15km) - アスペリティ位置:de南へ30km - 新層面上線深さ:5km - 組合せの時間差:110s	13.14m	・新層パターン:7 - 波源位置:4矩形モデル(東へ15km) - アスペリティ位置:de南へ20km - 新層面上線深谷:5km - 総合せの時間差:110s	11.86m	 断層バターン:7 波源位置:4矩形モデル(東へ15km) アスペリテイ位置:de南へ20km ・耐層面上線深さ:5km ・組合せの時間差:115s 	12.89m	・新層パターン:7 - 波源位置:4紀形モデル(東へ15km) - アスペリティ位置:de南へ30km - 新層面上線深谷:5km - 組合せの時間差:110s
1号及び 2号炉 取水口 (上昇側)	9.34m	・新層バターン:6 ・波源位置:4矩形モデル(東へ5km) ・アスペリティ位置:de南へ20km ・新層面上線深さ:5km ・組合せの時間差:135s	12.74m	- 新層パターン:7 - 波源位置: 矩形モデル (車へ15km) - アスペリティ位置: de南へ20km - 新層面上線波さ:5km - 組合せの時間差: 115s	12.01m	・断層パターン:7 ・波遊位置:45形モデル(東へ15km) ・アスペリテイ位置:de南へ20km ・動層面上線深さ:5km ・組合せの時間差:85s	11.50m	・新層パターン:7 ・波源位置:4紀形モデル(東へ15km) ・アスペリテル位置:de南へ30km ・新層面上線波さ:5km ・組合せの時間差:120s
放水口 (上昇側)	10.91m	・新層パターン:7 - 波遊位置:4矩形モデル(東へ15km) - アスペリティ位置:de南へ30km - 新層面上線深さ:5km - 組合せの時間差:135s	10.84m	・断層パターン:7 - 波潭位置:4紀形モデル(東へ15km) ・アスペリティ位置:de南へ30km ・断層面上鏡波さ:5km ・紙合せの時間差:135s	10.85m	・断層パターン:7 ・波遊位置:44形モデル(東へ15km) ・アスペリテ(位置:de南へ30km ・断層面上線深さ:5km ・組合せの時間差:135s	10.66m	・新層パターン:7 - 波遊位置:4紀形モデル(東へ15km) ・アスペリテル位置:de南へ30km ・新層面上線波さ:5km ・紙合せの時間差:135s

【基準津波(水位上昇側)】

※4地形モデル×4評価項目=16波源に対して、一部の波源が重複する(同一波源が選定される)ため、基準津波 A~基準津波 Hの8波源となる。

【基準津波(水位下降側)】

報係項目	健全地形モデル		防波	提の損傷を考慮した地形モデル①	防治	安堤の損傷を考慮した地形モデル②	防波	防波堤の損傷を考慮した地形モデル③		
計画項目	時間	断層パラメータの概要	時間	断層パラメータの概要	時間	断層パラメータの概要	時間	断層パラメータの概要		
「貯留堰を 下回る時間」	721s	・断層バターン:6 蒸源位置:くの字モデル(西へ20km) ・アスペリティ位置:de南へ20km ・耐層面上総深さ:5km ・組合せの時間差:40s	698s	新聞パターン:7 - 波源位置:<の字モデル(西へ25km) - アスペリティ位置:de南へ20km - 新聞面上総課さ:5km - 組合せの時間差:45s	743s	・断層バターン:7 液源位置:矩形モデル(東へ15km) ・アスペリテ化位置:位南へ20km ・断層面上線深さ5km ・組合せの時間差:135s	863s	 新聞バターン:7< 基準漆波し 波源位置:矩形モデル(東へ15km) アスペリティ位置:de 新居面上線深谷:3km 総合せの時間差:90s 		

基準津波の策定位置

(6) 基準津波の策定のまとめ

基準津波の策定(まとめ) (2/2)

【敷地周辺における「基準津波による水位」と「津波痕跡高及びイベント堆積物の分布標高」の比較結果】

敷地近傍である岩内平野のイベント堆積物について、詳細比較を実施

【行政機関による津波評価に基づく津波の数値シミュレーション結果(健全地形モデル)】

	国土	交通省ほか (2)	014)		北海道	秋田県 (2016)			
評価項目	F12断層	F14断層	F15断層	F12断層	F14断層①	F14断層②	F15断層	海域A+B+C 基準津湖 連動モデル	
	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量,時間	水位変動量, 時間	水位変動量,時間	水位変動量,時間	水位変動量, 時間
防潮堤前面 (上昇側)	4.05m	4.29m	4.87m	4.76m	4.72m	3.92m	5.62m	2.53m	13.44m
3号炉取水口 (上昇側)	2.47m	3.49m	3.37m	2.78m	3.70m	3.81m	3.82m	2.15m	10.45m
1号及び2号炉取水口 (上昇側)	2.50m	3.44m	3.37m	2.58m	3.77m	3.55m	3.76m	2.15m	9.34m
放水口 (上昇側)	2.57m	3.54m	3.13m	2.59m	3.95m	2.66m	3.35m	1.78m	10.91m
「貯留堰を 下回る時間」	Os	Os	Os	Os	Os	Os	16s	Os	721s

1. 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3) 基準津波の策定 ····································	17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
a. 基準津波と既往津波から推定される津波高との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
c. 数値シミュレーション結果の比較(STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. 補足説明資料 ••••••••••••••••••••••••••••••••••••	39
(1) 基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2) 行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)2
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・)6
参考文献 ••••••••••••••••••••••••••••••••••••	16
「海域活断層に想定される地震に伴う津波の検討方針」及び「積丹半島北西沖の断層による津波評価の目的」

※1:「日本海東縁部に想定される地震に伴う津波」は、「海域活断層に想定される地震に伴う津波」とは別に検討する。

【海域活断層に想定される地震に伴う津波の検討フロー】

《簡易予測式による抽出》
○簡易予測式を用いて泊発電所における推定津波高を比較することにより、複数の活断層から
津波の数値シミュレーションの対象を抽出する。

- ※2:「津波の数値シミュレーションによる評価」は未実施であることから、今 回実施する。
- ※3:最新の計算条件に更新して、数値シミュレーションを再実施した結果を 用いた(変更点は、P107~115を参照)。

《津波の数値シミュレーションによる評価》

○上記より抽出した津波を対象に、波源位置の水深や海岸地形等の影響を考慮するために、津 波の数値シミュレーションを実施する。

【積丹半島北西沖の断層による津波評価の目的】

○「積丹半島北西沖の断層」は, 簡易予測式により抽出され (P75参照), 波源位置の水深や海岸地形等の影響を考慮する必要があることから, 津波の数値シミュレーションによる評価を実施する。

○そのうえで、数値シミュレーション結果の比較から、地震に伴う津波として敷地に対して最も大きな影響を及ぼす波源を選定する。

※4:「F_B-2断層」については、「後志海山東方の断層~F_B-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

74

簡易予測式による抽出(1/2) 【推定建波高の算出対象】 活断層調査結果より,対象 断層の位置と長さを設定 ○敷地周辺の海域活断層のうち.敷地に影響が大きいと考えられる以下の断層を対象とする(算 出対象外とした断層とその根拠は、備考を参照)。 $L \ge 26.0 \text{km}^{1}$ $L < 26.0 \text{km}^{1}$ > 神威海脚西側の断層(下図①) > 寿都海底谷の断層(下図8) 活断層の長さ ▶ F_n-1断層~岩内堆北方の断層(下図2~3) ≻ F_B-2断層(下図13) 断層幅が上限に 断層幅が上限に > F₆-10断層~岩内堆東撓曲~岩内堆南方背斜(下図④~⑥) > 積丹半島北西沖の断層(下図20) 達していない時 達している時 【推定津波高の算出方法】 武村(1998)の関係より 断層幅Wを算定 ○右記のフローに基づき, 阿部 (1989)の簡易予測式により「モーメントマグニチュードMw」と「津波 L/W = 1.5の伝播距離△」から、推定津波高を算定する。 油成実施方側の新展 2) Fp-1新層 断層幅の上限値に対応する断層長 武村(1998)の関係より ③ 岩内地北方の新聞 【備考:算出対象外とした断層とその根拠】 ④ F1-10時間 さL,及びすべり量D,よりすべり 地震モーメントMoを算定 5 岩内堆束换曲 **(7). (9)** $\log M_0 = 2.0 \log L + 16.64$ 量Dを算定²⁾ ⑧ 岩内堆南方背斜 ▶ 断層長さが短いため対象外とした。 ⑦ Fs-12断层 $L \propto D$, W=const. $D = D_{t} \times (L/L_{t})$ 8 春都海南谷の新井 ③ 神恵内堆の新序部 (B) FA-185 88 **《10. 11. 12. 15》** 00 FA-1' #FB (注 FA-285)器 ▶ 敷地と断層の間に積丹半島があること ① Fa-2新聞 活断層の剛性率μにより地震モー (2) Fa-316 88 で、影響が小さいと考えられるため対象 メントM。を算定 (R) Fr-185.86 外とした。 68 赤井川断層 $\mu = 3.5 \times 10^{10} \text{N/m}^2$ ① 原別目断層 第日名付近の新展 $M_0 = \mu D L W$ 13 黒松内低地帯の新層 (12) **(14)** 診 積丹半島北西沖の断層 ▶「⑬F_h-2断層」と比較して,長さが短く, 距離も遠いため対象外とした。 地震モーメントMaからモーメントマグニチュードMwを算定 $M_w = (\log M_0 - 9.1)/1.5$ **《16, 17, 18, 19》** > 陸域の断層であるため対象外とした。 阿部(1989)の予測式(日本海側)により推定津波高H。を算定 $\begin{array}{l} \log H_{t} = \ M_{W} \ - \ \log \ \Delta - 5.35 \qquad (\Delta > \Delta_{0}) \\ \log H_{t} = \ 0.5 M_{W} \ - \ 3.1 \qquad (\Delta \leq \Delta_{0}) \end{array}$ 0.000 ここで、 Δ : 津波の伝播距離、 $\log \Delta_0 = 0.5 M_W - 2.25$ 断層幅の上限W,は、地震発生層の厚さH。を15kmとし、傾斜角δを60°(30~60°のうち M_w が最大となる値)とした際には、 $W_t = H_a / \sin \delta = 17.3 \text{km} となる。$ また、断層幅の上限に対応する断層長さL,は、L,=1.5W,=26.0kmとなる。 19 断層幅の上限に対応するすべり量D.は、 モーメントマグニチュードを $M_{w_{+}} = (\log L_{+} + 3.77)/0.75 = 6.91$ 地震モーメントを $M_{0,t} = 10^{(1.5M_{w,t} + 9.1)} = 2.95 \times 10^{19} Nm$, 剛性率を $\mu = 3.5 \times 10^{10} \text{N/m}^2$ とした際には、D₊=M₀₊/(μ L₊W₊)=1.87mとなる。

簡易予測式による推定津波高の算定フロー

※1:「F。-2断層」については、「後志海山東方の断層~F。-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

敷地周辺の活断層分布

10 20 30 40 km

前頁より選定した算定対象

2. 積丹半島北西沖の断層による津波評価

簡易予測式による抽出(2/2)

【抽出結果】

- ○前頁より選定した算定対象について、阿部(1989)の簡易予測式を用いて推定津波高を算定した。
- ○算定した推定津波高の比較結果より、推定津波高さが比較的高い以下の5波源を抽出した。
 - ≻ F_s-10断層~岩内堆東撓曲~岩内堆南方背斜
 - ≻ F_B-2断層
 - > 積丹半島北西沖の断層(走向0°)
 - 積丹半島北西沖の断層(走向20°)
 - ▶ 積丹半島北西沖の断層(走向40°)

			同ジュミシンの	ッチだしたほん	こ千似向					-	
		断層の名称	断層長さ L (km)	断層幅 W(km)	すべり量 D (m)	地震モーメント M ₀ (N・m)	モーメントマク [・] ニチュート [・] M _W **2	津波の伝播距離	推定津波高 H _t (m)		
7	ſ	①神威海脚西側の断層	31.5	17.3	2.24	4.28×10 ¹⁹	7.0	48	1.0		
		②F _D -1断層~③岩内堆北方の断層	39	17.3	2.78	6.60×10 ¹⁹	7.2	51	1.2	Іг	k
		④F _s -10断層~⑤岩内堆東撓曲~⑥岩内堆南方背斜	98	17.3	6.98	4.15×10 ²⁰	7.7	42	5.1	\$	
		⑧寿都海底谷の断層	42	17.3	2.99	7.61×10 ¹⁹	7.2	47	1.5		
K		⑬F _B -2断層	101	17.3	7.19	4.40×10 ²⁰	7.7	85	2.6	₽	けたり
[']		②積円半島北西沖の断層(走向0°) ^{※1}	32	17.3	2.28	4.40×10 ¹⁹	7.0	22	2.2	₿	東的
		⑩積丹半島北西沖の断層(走向20°) ^{※1}	32	17.3	2.28	4.40×10 ¹⁹	7.0	17	2.6	₿	言し
-		⑩積円半島北西沖の断層(走向40°) ^{※1}	32	17.3	2.28	4.40×10 ¹⁹	7.0	14	2.6	₿	汎派

簡易予測式より算定した推定津波高

※1:露岩域の西縁, 大陸棚外縁から大陸斜面への変換線が約0°~約40°を呈していることから, 走向0°, 走向40°, 及び中間の走向20°を考慮した。 ※2:推定津波高さの算出には, 「M_W」の小数第2位までの値を使用して算出した。

○以降では、抽出した5波源を対象に、波源位置の水深や海岸地形等の影響を考慮するために、津波の数値シミュレーションを実施する。
 ▷「積丹半島北西沖の断層」は、津波の数値シミュレーションを未実施であることから、今回実施する。

▶「F_B-2断層」及び「F_S-10断層~岩内堆東撓曲~岩内堆南方背斜」は、津波の数値シミュレーションを実施済み(平成26年12月5日審査会合説明)であり、参考 として整理する(なお、当時から防潮堤等の構造が変更となっているため、地形モデル・評価項目について最新の条件を用いた)。

※3:「F_B-2断層」については、「後志海山東方の断層~F_B-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

津波の数値シミュレーション方法(1/2) 基準断層モデル

○地震動評価で設定した断層パラメータを基に,積丹半島北西沖の断層として,走向0°,20°及び40°の3つ*1の基準断層モデルを設定する。

※1:露岩域の西縁、大陸棚外縁から大陸斜面への変換線が約0°〜約40°を呈していることから、走向0°、走向40°、及び中間の走向20°を考慮した。 【基準断層モデルの諸元】※2:平成26年12月5日審査会合において説明した「F_B-2断層」及び「F₈-10断層〜岩内堆東撓曲〜岩内堆南方背斜」による断層パラメータについても、参考として整理した。

断層パラメータ	積丹半島北西沖 の断層 (走向0°)	積丹半島北西沖 の断層 (走向20°)	積丹半島北西沖 の断層 (走向40°)	【参考*2】 F _B 一2断層	【参考 ^{**2} 】 F _s -10断層~ 岩内堆東撓曲~ 岩内堆南方背斜	断層パラメータの設定根拠
モーメントマク゛ニチュート゛ Mw	7.03	7.03	7.03	7.67	7.70	武村 (1998) に基づくスケーリング則により設定
断層長さし	32.0km ^{**3}	32.0km ^{**3}	32.0km ^{**3}	96km ^{×4} (48km×2)	100.6km ^{%4} (80.7km+19.9km)	※3:地震動評価で設定した断層パラメータより設定 ※4:地質調査結果により設定
断層幅 W ^{*5}	21.2km	21.2km	21.2km	21.2km	21.2km	地震発生層の厚さ(15km)と傾斜角により設定
すべり量 D ^{*5}	1.86m	1.86m	1.86m	5.65m	5.92m	M _w , L, Wにより設定
断層面上縁深さ d	Okm	Okm	Okm	Okm	Okm	土木学会 (2016) により設定
走向 θ	0° %3	20°*3	40° *3	北断層 204° 南断層 174° ^{*4}	北断層 173° 南断層 199° ^{*4}	※3:地震動評価で設定した断層パラメータより設定 ※4:地質調査結果により設定
傾斜角 ô	45°	45°	45°	45°	45°	日本海東縁部の傾斜角30~60°より設定
すべり角 λ	90°	90°	90°	90°	90°	土木学会 (2016) により設定

【基準断層モデル図】

<5:「断層幅 W」及び「すべり量 D」は,後述する傾斜角のバラメータスタディ(30°,60°)により変化する(上表は45°の場合,30°,60°の場合は,「断層バラメータの設定方法」 P78,79参照)。

※6:「F₈-2断層」については、「後志海山東方の断層~F₈-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

積丹半島北西沖の断層による津波評価 2.

津波の数値シミュレーション方法(2/2) パラメータスタディの方法

一部修正(H26/12/5審査会合)

【パラメータスタディの方法】

○土木学会 (2016) に基づき、基準断層モデル毎に、断層パラメータの不確かさを考慮したパラメータスタディを、以下のとおり実施する。

《概略パラメータスタディ》

▶傾斜角(30°, 45°, 60°)とすべり角(75°, 90°, 105°)を ▶概略パラメータスタディの最大ケースを対象に, 断層面上縁深 組合せた9ケースのパラメータスタディを実施し、各評価項目^{*1}の
さ(Okm, 2.5km, 5km)を変動させたパラメータスタディを実施 最大ケースを詳細パラメータスタディの検討対象として選定する。

《詳細パラメータスタディ》

し. 各評価項目※1の最大ケースを選定する。

※1:「防潮堤前面(水位上昇量)」,「3号炉取水口(水位上昇量)」,「1号及び2号炉取水口(水位上昇量)」,「放水口(水位上昇量)」,「3号炉取水口(水位下降量)」並びに「貯留堰を下回る時間」

断層パラメータの設定方法(1/2)

○海域活断層に想定される地震に伴う津波の断層パラメータは、土木学会(2016)に基づき設定している。

海域活断層に想定される地震に伴う津波の断層パラメータの設定フロー (土木学会(2016)に一部加筆)

○傾斜角 δに応じて, 断層幅 Wが決定し, すべり量 Dが設定される。 ○ここで, 傾斜角 δのパラメータスタディ(30°, 45°, 60°)を実施する際には, 傾斜角 δに応じた断層幅 W及びすべり量 Dを設定した。 ※1:なお,「すべり角 λ」,「断層面上縁深さ d」のパラメータスタディも実施しているが, これらのパラメータスタディに伴い, 他のパラメータの変動は生じない。

断層パラメータの設定方法(2/2)

○各断層における, 傾斜角 δに応じた断層幅 W及びすべり量 Dの設定は, 以下のとおりである。

断層パラメータ	積丹半	島北西沖の	断層*		
傾斜角 δ	30°	45°	60°		
断層幅 ₩	21.3km	21.2km	17.3km		
すべり量 D	1.33m	1.86m	2.28m		

断層パラメータ		F _B 一2断層							
傾斜角 δ	30°	45°	60°						
断層幅 ₩	30.0km	21.2km	17.3km						
すべり量 D	4.00m	5.65m	6.92m						

断層パラメータ	F _s -10断層~ 岩内堆東撓曲~ 岩内堆南方背斜						
傾斜角 δ	30°	45°	60°				
断層幅 ₩	30.0km	21.2km	17.3km				
すべり量 D	4.18m	5.92m	7.24m				

※走向に依らず, 傾斜角 δ, 断層幅 W, すべり量 Dは同じ値となる。

積丹半島北西沖の断層(走向0°)

Fs-10断層~岩内堆東撓曲~岩内堆南方背斜

※2:「F_B-2断層」については、「後志海山東方の断層~F_B-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

津波の数値シミュレーションの評価結果

○地震に伴う津波の数値シミュレーション結果は、下表のとおりである(パラメータスタディ結果の詳細については、次頁以降参照)。

【津波の数値シミュレーションの評価結果(健全地形モデル)】 *1:平成26年12月5日審査会合において説明した「F₈-2断層」及び「F₈-10断層~岩内堆東撓曲~岩内堆南方 背斜」による津波評価についても、積円半島北西沖の断層による津波評価と併せて、参考として整理した (なお、当時から防潮堤等の構造が変更となっているため、地形モデル・評価項目について最新の条件を用いた)。

				海域活	断層にな	想定される地震に	半う津波				
評価項目	積丹半島北西沖 の断層 (走向0°) (走向			予半島北西沖積丹半島北西沖の断層の断層走向20°)(走向40°)			【参考 ^{※1} 】 F _B 一2断層		【参考 ^{※1} 】 -10断層~ 内堆東撓曲~ 内堆南方背斜	日本海東縁部に 想定される 地震に伴う津波	
	水位変動量, 時間	断層バラメータの概要	水位変動量, 時間	断層バラメータの概要	水位変動量, 時間	断層バラメータの概要	水位変動量, 時間	断層バラメータの概要	水位変動量, 時間	断層バラメータの概要	水位変動量,時間
防潮堤前面 (上昇側)	1.61m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	2.31m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.25m	傾斜角:60° すべり角:105° 断層面上縁深さ:0km	5.16m	傾斜角:45° すべり角:90° 断層面上縁深さ:5km	6.67m	傾斜角:45° すべり角:75° 断層面上縁深さ:5km	10.20m
3号炉 取水口 (上昇側)	1.63m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.34m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.17m	傾斜角:60° すべり角:105° 断層面上縁深さ:0km	3.76m	傾斜角:60° すべり角:90° 断層面上縁深さ:5km	4.70m	傾斜角:45° すべり角:75° 断層面上縁深さ:5km	8.50m
1号及び2号炉 取水口 (上昇側)	1.52m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.35m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.16m	傾斜角:60° すべり角:105° 断層面上縁深さ:0km	3.61m	傾斜角:60° すべり角:90° 断層面上縁深さ:5km	4.69m	傾斜角:45° すべり角:75° 断層面上縁深さ:5km	8.63m
放水口 (上昇側)	1.52m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.37m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.31m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	3.62m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	3.80m	傾斜角:60° すべり角:90° 断層面上縁深さ:5km	9.20m
3号炉 取水口 (水位下降量) (参考値)	2.26m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.97m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	1.73m	傾斜角:60° すべり角:90° 断層面上縁深さ:0km	3.37m	傾斜角:45° すべり角:90° 断層面上縁深さ:2.5km	4.28m	傾斜角:60° すべり角:90° 断層面上縁深さ:2.5km	9.11m
「貯留堰を 下回る時間」	Os	 (貯留堰を下回らない)	Os	 (貯留堰を下回らない)	Os	 (貯留堰を下回らない)	Os	_ (貯留堰を下回らない)	33s	傾斜角:60° すべり角:90° 断層面上縁深さ:2.5km	706s

<mark>黄ハッチング</mark>は評価項目の最大ケースである。

○津波の数値シミュレーション結果からも、「日本海東縁部に想定される地震に伴う津波」が選定されること(各評価項目の最大ケースとなること)を確認した。

※2:「F_B-2断層」については、「後志海山東方の断層~F_B-2断層」に変更するが、「地震に伴う津波と地震以外の要因に伴う津波の組合せ」の評価に用いる波源が変わらないため、本資料の説明内容(基準津波の策定)に影響しない(P88参照)。

※1:平成26年12月5日審査会合において説明した「F_B-2断層」及び「F_S-10断層~岩内堆東撓曲~岩内堆南方 背斜」による津波評価についても、積円半島北西沖の断層による津波評価と併せて、参考として整理した (なお、当時から防潮堤等の構造が変更となっているため、地形モデル・評価項目について最新の条件を用いた)。

パラメータスタディ結果(1/5) 積丹半島北西沖の断層(走向0°)

○積丹半島北西沖の断層(走向0°)のパラメータスタディ結果は、下表のとおりである。

	変動パラメータ		防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉		
対象ケース			(上昇側)	(上昇側)	(上昇側)	(上昇側)	利 不)	琒側)	
	傾斜角	すべり角	すべり角	傾斜角 すべり角 水位変動量 水位変動量 水	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間	
		75°	0.92m	0.80m	0.72m	0.70m	-1.20m	Os	
	30°	90°	0.89m	0.88m	0.80m	0.76m	-1.28m	Os	
	00	105°	0.88m	0.88m	0.80m	0.77m	-1.28m	Os]
基準断層モデル		75°	1.35m	1.36m	1.25m	1.16m	-1.92m	Os	
	45°	90°	1.41m	1.42m	1.32m	1.23m	-2.04m	Os]
・断層面上縁深さ:Okm	40	105°	1.36m	1.37m	1.28m	1.23m	-2.02m	Os	概略パラメータスタテ
		75°	1.56m	1.57m	1.44m	1.44m	-2.13m	Os	最大ケース
	60°	90°	1.61m	1.63m	1.52m	1.52m	-2.26m	Os	
		105°	1.55m	1.57m	1.47m	1.50m	-2.24m	Os	1

【概略パラメータスタディ結果 (傾斜角, すべり角のパラメータスタディ)】

		【詳細パラメータスタテ	「ィ結果 (断層	面上縁深さ	のパラメータ	スタディ)】			_	
		変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口		
	対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下M	(下降側)		
		断層面上縁深さ	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間		
	概略パラメータスタディ	Okm	1.61m	1.63m	1.52m	1.52m	-2.26m	Os	┝→	•
→	取入ゲーム	2.5km	1.43m	1.44m	1.37m	1.30m	-2.13m	Os		最大ケースとして (P80へ)
	・頃料用・00 ・すべり角:90°	5km	1.16m	1.16m	1.14m	1.03m	-1.90m	0s]	

※1:黄ハッチングは評価項目の最大ケースである。

パラメータスタディ結果(2/5) 積丹半島北西沖の断層(走向20°)

○積丹半島北西沖の断層(走向20°)のパラメータスタディ結果は、下表のとおりである。

	変動バ	変動パラメータ		ラメータ 防潮堤前面 3号炉 取水口		3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	
対象ケース			(上昇側)	(上昇側)	(上昇側)	(上昇側)	(TI	琒側)		
	傾斜角	すべり角	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間		
		75°	0.99m	0.63m	0.61m	0.51m	-1.06m	Os		
	30°	90°	1.01m	0.66m	0.63m	0.56m	-1.12m	Os		
		105°	0.95m	0.62m	0.59m	0.57m	-1.12m	Os		
基準断層モデル		75°	1.72m	1.09m	1.08m	0.97m	-1.67m	Os		
	45°	90°	1.75m	1.13m	1.13m	1.03m	-1.76m	Os]	
・断層面上縁深さ:0km	40	105°	1.66m	1.03m	1.07m	1.02m	-1.75m	Os	概略パラメータスタテ	
		75°	2.27m	1.28m	1.27m	1.30m	-1.89m	Os	最大ケース	
	60°	90°	2.31m	1.34m	1.35m	1.37m	-1.97m	Os	}	
		105°	2.19m	1.31m	1.30m	1.35m	-1.94m	Os	1	

【概略パラメータスタディ結果 (傾斜角, すべり角のパラメータスタディ)】

		【詳細パラメータスタテ	「ィ結果 (断層	面上縁深さ	のパラメータ	スタディ)】			_	
		変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口		
	対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下降側)			
		断層面上縁深さ	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間		
	概略パラメータスタディ	Okm	2.31m	1.34m	1.35m	1.37m	-1.97m	Os	┝→	
-	取入ゲーム	2.5km	1.94m	1.12m	1.10m	1.12m	-1.77m	Os		最大ケースとして選 (P80へ)
	•すべり角:90°	5km	1.42m	0.85m	0.83m	0.83m	-1.46m	Os		

※1:黄ハッチングは評価項目の最大ケースである。

パラメータスタディ結果(3/5) 積丹半島北西沖の断層(走向40°)

○積丹半島北西沖の断層(走向40°)のパラメータスタディ結果は、下表のとおりである。

	変動パラメータ		防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口	
対象ケース			(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下)	夆側)	
	傾斜角	すべり角 	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間	*
		75°	0.73m	0.52m	0.49m	0.55m	-0.66m	Os	• •
	30°	90°	0.80m	0.56m	0.55m	0.60m	-0.69m	Os	
	00	105°	0.84m	0.58m	0.57m	0.60m	-0.68m	Os	
基準断層モデル		75°	1.10m	0.82m	0.80m	0.95m	-1.18m	Os	
	45°	90°	1.16m	0.91m	0.89m	1.02m	-1.23m	Os	
・断層面上縁深さ:0km	40	105°	1.16m	0.94m	0.93m	1.02m	-1.21m	Os	概略パラメータスタディ
		75°	1.21m	1.07m	1.05m	1.23m	-1.66m	Os	最大ケース①
	60°	90°	1.24m	1.16m	1.14m	1.31m	-1.73m	Os	
		105°	1.25m	1.17m	1.16m	1.29m	-1.70m	Os	

【概略パラメータスタディ結果 (傾斜角, すべり角のパラメータスタディ)】

Γ	【詳細パラメータスタディ結果(断層面上縁深さのパラメータスタディ)】										
		変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口			
	対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下降側)				
		断層面上縁深さ	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間			
	概略パラメータスタディ 最大ケース①	Okm	1.24m	1.16m	1.14m	1.31m	-1.73m	Os			
	最大ケース① ・傾斜角:60° ・すべり角:90°	2.5km	1.15m	0.87m	0.83m	0.90m	-0.85m	Os			
		5km	0.91m	0.62m	0.61m	0.63m	-0.58m	Os	1	最大ケースとして選定	
	概略パラメータスタディ	Okm	1.25m	1.17m	1.16m	1.29m	-1.70m	Os		(P80 ^)	
	最大ケース②	2.5km	1.15m	0.91m	0.88m	0.93m	-0.86m	Os			
	*1943月-00 ・すべり角:105°	5km	0.93m	0.66m	0.65m	0.66m	-0.59m	Os			

※1:黄ハッチングは評価項目の最大ケースである。

84

パラメータスタディ結果 (4/5) F_B-2断層

○F_B-2断層のパラメータスタディ結果は、下表のとおりである。

※1:平成26年12月5日審査会合において説明した「F_B-2断層」による津波評価について、参考として整理した(なお、当時から防潮堤等の構造が変更となっているため、地形モデル・評価項目について最新の条件を用いた)。

	変動パ	ラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口					
対象ケース			(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下開	夆側)					
	傾斜角	すべり角	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間					
		75°	3.91m	2.78m	2.76m	2.14m	-3.12m	Os					
	30°	90°	4.12m	2.91m	2.86m	2.23m	-3.23m	Os					
	50	105°	3.96m	2.91m	2.83m	2.16m	-3.17m	Os	概略パラメータスタディ				
基準断層モデル		75°	4.21m	3.14m	2.92m	3.18m	-3.27m	Os	最大ケース①				
	45°	90°	4.29m	3.24m	3.05m	3.29m	-3.36m	Os					
・断層面上縁深さ:0km	-10	105°	4.15m	3.19m	3.03m	3.19m	-3.33m	Os					
		75°	3.97m	3.20m	2.93m	3.49m	-2.78m	Os					
	60°	90°	4.17m	3.29m	3.01m	3.62m	-2.86m	Os					
		105°	3.96m	3.21m	2.97m	3.50m	-2.85m	Os					

【概略パラメータスタディ結果(傾斜角, すべり角のパラメータスタディ)】

┢	【詳細パラメータスタディ結果(断層面上縁深さのパラメータスタディ)】											
		変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口				
	対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下)	夅側)				
		断層面上縁深さ	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間				
	概略パラメータスタディ	Okm	4.29m	3.24m	3.05m	3.29m	-3.36m	Os				
	最大ケーム①	2.5km	4.69m	3.43m	3.31m	3.35m	-3.37m	Os	┝━►			
	*頃#7月:45 ・すべり角:90°	5km	5.16m	3.54m	3.53m	3.18m	-3.33m	Os	┝→	最大ケースとして選定		
	概略パラメータスタディ	Okm	4.17m	3.29m	3.01m	3.62m	-2.86m	Os	┝→	(P80へ)		
	取大ゲーム2	2.5km	3.84m	3.55m	3.32m	3.51m	-2.75m	Os				
	・1947月・00 ・すべり角:90°	5km	4.11m	3.76m	3.61m	3.15m	-3.00m	Os	┝━►			

※2:黄ハッチングは評価項目の最大ケースである。

パラメータスタディ結果(5/5) F_s-10断層~岩内堆東撓曲~岩内堆南方背斜

○F_s-10断層~岩内堆東撓曲~岩内堆南方背斜のパラメータスタディ結果は、以下のとおりである。

※1:平成26年12月5日審査会合において説明した「F_s-10断層~岩内堆東撓曲~岩内堆南方背斜」による津波評価について、参考として整理した (なお、当時から防潮堤等の構造が変更となっているため、地形モデル・評価項目について最新の条件を用いた)。

【概略パラメータスタディ結果 (傾斜角, すべり角のパラメータスタディ)】

	変動パ	ラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口	
対象ケース			(上昇側)	(上昇側)	(上昇側)	(上昇側)	ا م۲)	夆側)	
	傾斜角	すべり角	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間	
		75°	5.84m	3.76m	3.64m	2.43m	-3.25m	Os	
	30°	90°	6.02m	3.73m	3.62m	2.59m	-3.18m	Os	
		105°	5.80m	3.50m	3.42m	2.56m	-2.97m	Os	概略パラメータスタディ
基準断層モデル		75°	6.21m	4.09m	3.99m	3.17m	-3.58m	Os	━━┓ 最大ケース①
	45°	90°	6.15m	4.06m	4.01m	3.23m	-3.48m	Os	
・断層面上縁深さ:0km		105°	5.87m	3.89m	3.86m	3.12m	-3.46m	Os	
		75°	5.75m	4.13m	4.10m	3.58m	-3.73m	Os	
	60°	90°	5.61m	4.25m	4.26m	3.74m	-3.90m	Os	
		105°	5.30m	4.18m	4.17m	3.65m	-3.79m	Os	

-		【詳細パラメータスタラ	ディ結果 (断層	面上縁深さ	のパラメータ	スタディ)】			:	ーー」 概略パラメータスタディ
		変動パラメータ	防潮堤前面	3号炉 取水口	1号及び2号炉 取水口	放水口	3号炉	取水口]	最大ケートと
	対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下)	夆側)		
		断層面上縁深さ	水位変動量 水位変動量 2		水位変動量	水位変動量	水位変動量 下回る時間			
	概略パラメータスタディ	Okm	6.21m	4.09m	3.99m	3.17m	-3.58m	Os		
►	最大ケース① ・傾斜角:45° ・すべり角:75°	2.5km	6.60m	4.51m	4.44m	3.42m	-3.75m	Os		
		5km	6.67m	4.70m	4.69m	3.39m	-3.96m	13s	┝→	最大ケースとして選定
	概略パラメータスタディ	Okm	5.61m	4.25m	4.26m	3.74m	-3.90m	Os]	(P80 ^)
►	最大ケーム(2) ほかした・0.0°	2.5km	5.78m	4.54m	4.50m	3.60m	-4.28m	33s	┝→	
	・傾斜月:00 ・すべり角:90°	5km	6.06m	4.63m	4.55m	3.80m	-4.21m	26s	┝→	

※2:黄ハッチングは評価項目の最大ケースである。

_

٢ſ Ο

参考資料

「後志海山東方の断層~F _B -2断層」の影	一部修正 (R6/7/19審査会合)	
)阿部 (1989) の簡易予測式による推定津波高の比較結果」 「後志海山東方の断層~F _B -2断層」の推定津波高は,「F _B -2断 層」よりも高くなるものの,「日本海東縁部に想定される地震に伴 う津波」と対比して十分に低い。	「②波源位置及び津波のパ 〇「後志海山東方の断層~ 部に想定される地震に伴 の影響が大きいパラメー に想定される地震に伴う	┛ ラメータによる比較結果」 ・F _B −2断層」の波源位置は,「日本海東線 う津波」に包絡され,かつ,津波評価へ タである最大すべり量は「日本海東縁部 津波」と対比して十分に小さい。

【阿部 (1989)の簡易予測式による推定津波高の比較】

	名称	断層長さ L (km)	断層幅 すべり量 W **1 D (km) (m)		モーメント マグニチュート [・] M _W ^{※2}	津波の 伝播距離 ム (km)	推定津波高 H _t (m)
海域活断 層に想定さ	後志海山東方の断層~ F _B −2断層	124	17.3	8.83	7.8	73	4.0
れる地震に 伴う津波	参考:F _B -2断層	101	17.3	7.19	7.7	85	2.6
日本海東縁 う津波 (地震	☆のでした。 ●「「「」」 ●「」」 ●」」 ●	320	40.0	最大:12.00 平均:6.00 ^{**3}	8.2	71	10.2

※1:津波評価への影響が大きいパラメータであるすべり量が大きくなるように,保守的に断層幅 Wを設定した。

※2:推定津波高さの算出には、「M_w」の小数第2位までの値を使用して算出した。 ※3:「日本海東縁部に想定される地震に伴う津波」の推定津波高さの算出には、平均すべり量6.00mを使用して算出した。

【波源位置の比較】

km

伴う津波の波源※4 ※4:最大ケースである波源位置を最も東 へ移動させたモデルを図示した。 100

○上記の「①阿部(1989)の簡易予測式による推定津波高の比較結果」及び「②波源位置及び津波のパラメータによる比較結果」より、組合 **せ評価に用いる「地震に伴う津波」の選定結果への影響はない。**

1. 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3) 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
a. 基準津波と既往津波から推定される津波高との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
c. 数値シミュレーション結果の比較(STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
	~~
	89
(1) 基準洋波の東天水位上升重分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2) 行政機関の検討機要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16

(1) 基準津波の最大水位上昇量分布

運全地形モテルの最大ケー (基準津波A・B・C・D)

防潮堤前面の最大水位の縦断図

(1) 基準津波の最大水位上昇量分布

本頁の整理対象 防波堤の損傷を考慮した 地形モデル①の最大ケース (基準津波E・F・D)

防潮堤前面の最大水位の縦断図

(1) 基準津波の最大水位上昇量分布

最大水位上昇量分布図

(1) 基準津波の最大水位上昇量分布

本頁の整理対象 防波堤の損傷を考慮した 地形モデル③の最大ケース (基準津波F・B・H・D)

防潮堤前面の水位の縦断図

最大水位上昇量分布図

3.	補足説明資料
(2)	行政機関の検討概要

1. 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 9
(3) 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 23
a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 30
c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 39
b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 42
c. 数値シミュレーション結果の比較 (STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	, 69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. 補足説明資料	89
(1) 基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 90
(2) 行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	·102
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
参考文献 ••••••••••••••••••••••••••••••••••••	116

補足説明資料 3.

95

F26

F27

F28

F29

F30

7.4

7.3

7.7

7.3

7.8

(2) 行政機関の検討概要

国土交通省ほか(2014)の検討概要

■国土交通省ほか(2014)

○国土交通省ほか(2014)では、日本海においてF01~F60断層を想定した津波評価を実施している。 ○このうち泊発電所に近い位置の断層モデルは、F12断層(M_w:7.4), F14断層(M_w:7.8)及びF15断層(M_w:7.8)である。

津波断層モデルのM_w一覧 (国十交诵省ほか(2014)に一部加筆)

F56

F57

F58

F59

F60

7.2

7.5

7.1

7.4

7.6

		•		• • ·	抗士
津波断層 モデルNo.	M _w		津波断層 モデルNo.	M _w	
F01	7.9		F31	7.6	海底断層トレース
F02	7.7		F32	7.3	設定断層モデル F02
F03	7.2		F33	7.5	FOI
F04	7.3		F34	7.7	and the second of the second o
F05	7.3		F35	7.6	
F06	7.6		F36	7.3	FOS FO4 FO3
F07	7.4		F37	7.4	PH PIS AFB
F08	7.4		F38	7.5	FIG FIG
F09	7.6		F39	7.4	FO9 (F07
F10	7.5		F40	7.2	F08 (F06
F11	7.5		F41	7.6	FILL OF FILL O
F12	7.4		F42	7.3	
F13	7.3		F43	7.6	
F14	7.8		F44	7.3	F14 A STATE OF A STATE
F15	7.8		F45	7.2	
F16	7.6		F46	6.9	
F17	7.8		F47	7.1	Fig. Fig. Fig. Fig. Fig.
F18	7.7		F48	6.9	FSI ESI ESI ESI
F19	7.8		F49	7.4	FIT F56 F55 VEN F562
F20	7.8		F50	6.8	AT THE AND
F21	7.4		F51	7.2	Brook and the first and the fi
F22	7.3		F52	7.3	F24 F20
F23	7.5		F53	7.2	F23- Martin Ma
F24	7.9	l	F54	7.2	
F25	7.3		F55	7.5	津波斯層モデル位置

津波断層モデル位置 (国土交通省ほか(2014)に一部加筆)

補足説明資料 3. (2) 行政機関の検討概要

北海道(2017)及び青森県(2021)の検討概要

■北海道(2017)

○国土交通省ほか(2014)に基づきF01~F20断層を想定した津波評価を実施している。 ○このうち泊発電所に近い位置の断層モデルは、F12断層(M_w:7.4), F14断層(M_w:7.9)及びF15断層(M_w:7.8)である。

地震モデル	Mw	説明
F01	7.9*	国の報告書により設定された津波断層モデルF01モデルをベースに、大すべり域を1つに繋げたモデル
F03 ⁻	7.4	国の報告書で示している断層トレースを基に、F03の東側の断層について、新たに設定したモデル
F02F03連動	7.8	国の報告書により設定された津波断層モデルF02とF03の連動を設定したモデル
F06	7.6*	国の報告書により設定された津波断層モデルF06モデルをベースに, 大すべり域を1つに繋げたモデル
F06 ⁻	7.6	国の報告書で示している断層トレースを基に、F06の東側の断層について、新たに設定したモデル
F07	7.4*	国の報告書により設定された津波断層モデルF07モデルをベースに、大すべり域を1つに繋げたモデル
F09	7.6*	国の報告書により設定された津波断層モデルF09モデルをベースに, 大すべり域を1つに繋げたモデル
F10	7.5*	国の報告書により設定された津波断層モデルF10モデルをベースに、大すべり域を1つに繋げたモデル
F12	7.4*	国の報告書により設定された津波断層モデルF12モデルをペースに、大すべり域を1つに繋げたモデル
F13	7.3*	国の報告書により設定された津波断層モデルF13モデルをベースに、大すべり域を1つに繋げたモデル
F14 010	7.0	国の報告書により設定された津波断層モデルF14モデルをベースとした以下の2モデルの解析結果を足し合わせたもの
F14_512	7.9	▶ 大すべり域を1つに繋げたモデル(F14断層①), 南側のセグメント全体を大すべり域として配置したモデル(F14断層②)
F15	7.8*	国の報告書により設定された津波断層モデルF15モデルをベースに、大すべり域を1つに繋げたモデル
F17	7.8*	国の報告書により設定された津波断層モデルド17モデルをペースに、大すべり域を1つに繋けたモデル
F18	7.7*	国の報告書により設定された津波断層モデルF18モデルをベースに, 大すべり域を1つに繋げたモデル
F20	7.8*	国の報告書により設定された津波断層モデルF20モデルをベースに、大すべり域を1つに繋げたモデル
	※国土交通省ほ	か (2014) のM.,の値を掲載

(北海道(2017)に一部加筆)

(青森県(2021)より引用)

津波断層モデル位置 (北海道(2017)に一部加筆)

北方道之西河

■青森県(2021)

96

96

3. 補足説明資料 (2) 行政機関の検討概要

秋田県 (2016) 及び山形県 (2014)の検討概要

■秋田県(2016)

○単独地震として3領域を設定したうえで、さらに連動地震として3領域の同時破壊を想定した断層長さ 350km, M_w8.69の地震を想定した津波評価を実施している。

想定地震パラメータ

区分	ID	震源,想定地震	関連震源	想定した地震規模		傾斜角		すべり角	断層モデル 上端深さ	断層 モデル長さ	断層 モデル幅	断層 モデル面積	断層モデル 下端深さ	地震モーメント	モーメント マグニチュート	平均 すべり量	備考	
				断層長さL (km)	マグニチュート' M _j		δ(*)	λ(°)	Hs (km)	L _{model} (km)	W _{model} (km)	S _{model} (km²)	H _d (km)	M _d (Nm)	Mw	D _{model} (m)		
単独地震	1	海域A	日本海中部	130	7.9	東傾斜	35	90	0	130	50	6.500	29	6.85E+20	7.82	3.0		
	2	海域B	佐渡島北方沖.秋田県 沖.山形県沖	140	7.9	東傾斜	35	90	0	140	54	7,560	31	8.59E+20	7.89	3.2	小断層を2km×2km でモデル化	
	3	海域C	新潟県北部沖. 山形県沖	80	7.5	西傾斜	55	90	0	80	32	2,560	26	1.69E+20	7.42	1.9		
連動地震	4	海域A+海域B	新潟県北部沖. 山形県沖	270	8.5	東傾斜	20	90	0	270	105	28,350	36	6.24E+21	8.46	6.3	小断層を5km×5km でモデル化	
	5	海域B+海域C	佐渡島北方沖.秋田県 沖.山形県沖	220	8.3	東傾斜	20	90	0	220	85	18,700	29	3.34E+21	8.28	5.1		
	6	海域A+海域B+海域C	新潟県北部沖,山形県沖	350	8.7	東傾斜	20	90	0	350	135	47.250	46	1.34E+22	8.69	8.1		

注) 海域Cの単独地震については、津波シミュレーションの概略計算で秋田県への影響が比較的小さいと想定されたため、最終的な詳細計算は省略した。 (秋田県(2013)※に一部加筆) ※秋田県(2016)においても同様のパラメータを使用している。 想定地震位置図 (秋田県 (2016)より引用)

■山形県(2014)

○地震本部 (2003) が示す佐渡島北方沖の空白域にマグニ チュード8.5の地震を想定した津波評価を実施している。

想定震源域及び想定地震規模

想定震源域	想定地震規模
「長期評価佐渡島北方沖」の空白域(右図「B」)	マグニチュード8.5
「長期評価秋田県沖」の空白域(右図「C」)	マグニチュード8.0

(山形県(2014)に一部加筆)

(2) 行政機関の検討概要

新潟県(2023)及び富山県(2012)の検討概要

■新潟県 (2023)

○地震調査研究推進本部の設定値を基本に、陸域から海域に伸びる断層としてM_w7.63の地震を想定した津波評価を実施している。

(新潟県 (2023) に一部加筆)

想定震源位置図 (新潟県(2023)に一部加筆)

■富山県(2012)

○糸魚川沖に海域活断層としてマグニチュード8.0の地震を想定した津波評価を実施している。

		101							
名称	規模 (M)	原点	走向 (度)	傾斜角 (度)	滑り角 (度)	断層上端 深さ(km)	長さ (km)	幅 (km)	滑り量 (m)
呉羽山断層帯の地震	7.4	北緯 36.872° 東経 137.343°	210	45	90	0.1	35	22	2.9m (実測値)
糸魚川沖地震	7.2	北緯 37.002° 東経 137.556°	約41度 (平均走向)	30	90	0.1	28	44	2.2m (標準算式)
能登半島沖地震	7.2	北緯 37.531° 東経 137.463°	約103度 (平均走向)	30	90	0.1	28	44	2.2m (標準算式)
(参考) 糸魚川沖地震 【断層が連動する場合】	8.0	北緯 37.002° 東経 137.556°	約58度 (平均走向)	30	90	0.1	84	44	6.6m (標準算式)
(参考)呉羽山断層帯 の地震 【滑り量標準算式】	7.4	北緯 36.872° 東経 137.343°	210	45	90	0.1	35	22	1.4m (標準算式)

想完地震パラメータ

※1:滑り量の「標準算式」は、地震調査研究推進本部等で使用されている方法で、地震のモーメント(規模)と断層面積から求めるものである。
※2:呉羽山断層帯の滑り量の「実測値」は、平成7、8年度に実施した富山県の活断層調査結果より設定した。

(富山県(2012)に一部加筆)

98

98

3. 補足説明資料 (2) 行政機関の検討概要

石川県 (2012) 及び福井県 (2012)の検討概要

■石川県(2012)

 ○徳山ほか (2001) が示す活断層を基に、 M_w7.99の地震を想定した津波評価を実 施している。

断層名	断層名		2 能登半島 東方沖	3 能登半島 北方沖	4 石川県西方沖			
想定 マグニチュード	Mw	7.99	7.58	7.66	7.44			
気象庁 マグニチュード	Mj	8.54	8.03	8.13	7.85			
気象庁 マグニチュード	Mj	8.54	8.02	8.13	7.85			
断層長 (km)	L	167	82	95	65			
幅 (km)	w	17.32	17.32	17.32	17.32			
地震モーメント (N·m)	Мо	1.22E+21	2.95E+20	3.89E+20	1.82E+20			
すべり量 (m)	D	12.01	5.94	6.76	4.62			
上縁深さ(km)	d	0	0	0	0			
傾斜角	δ	60	60	60	60			
すべり角	λ	90	90	90	90			

相定地電パラメータ

(石川県(2012)に一部加筆)

 3 能登半島北方沖
 2 配鈴半島東方沖

 4 石川県西方沖
 3

日本海東縁部

想定地震位置図 (石川県 (2012) に一部加筆)

■福井県(2012)

○徳山ほか(2001)が示す活断層等を参考に、M_w7.99の地震を想定した津波評価を実施している。

想定地震パラメータ

福台油石	マグニチュート	地震により隆起する地盤						
进正波源	M _w	すべり量	長さ,	幅				
①野坂,B及び大陸棚外縁断層	7.28	3.73m	長さ49km	幅17.32km				
②越前堆列付近断層	7.44	4.62m	長さ65km	幅17.32km				
③若狭海丘列付近断層	7.63	6.43m	長さ90km	幅17.32km				
④佐渡島北方沖断層	7.99	12.01m	長さ167km	幅17.32km				

(福井県(2012)に一部加筆)

3. 補足説明資料 (2) 行政機関の検討概要

鳥取県(2012)及び島根県(2017)の検討概要

■鳥取県 (2012)

○地震本部 (2003) を参照し, 佐渡島北方沖の領域にM_w8.16の地震を想定した津波評価を実施 している。

(鳥取県(2012)に一部加筆)

想定地震位置図 (鳥取県 (2012) に一部加筆)

■島根県(2017)

○隠岐北西沖に海域活断層としてM_w6.9 の地震を想定した津波評価を実施している。

すべり角 断層長さ 断層幅 すべり量 緯度 経度 深さ 走向 傾斜角 津波断層モデル Mw (度) (度) (km) (度) (度) (度) (km) (**km**) (m) 浜田市沖合の地震 6.8 35,1888 132.2491 3.0 232 45 90 27.0 17.0 2.40 隠岐北西沖の地震 6.9 36,9606 132.5336 3.0 154 45 270 36.0 17.0 2.80

想定地震パラメータ

想定地震位置図 (島根県(2017)に一部加筆) 100

3. 補足説明資料 (2) 行政機関の検討概要

山口県 (2015)の検討概要

■山口県 (2015)

○見島北方西部に海域活断層としてM_w7.16の地震を想定した津波評価を実施している。

地震の規模				断層の位置	Ē	新層の大き	č	断層の向き			
断層名	М	Mw	緯度 (°)	経度 (°)	上縁 深さ d (km)	長さ L(km)	幅 W (km)	すべり量 D (m)	走行 θ(°)	傾斜角 δ(°)	すべり角 λ(゜)
見島付近西部断層	7.5	7.16	34.8941	130.9834	0	40	15	1.93	237.2	90	90
見島北方沖西部断層	7.5	7.13	35.6131	130.6081	0	38	15	3.20	73.5	90	90

想定地震パラメータ

(山口県 (2015a) に一部加筆)

(山口県 (2015b) に一部加筆)

補足説明資料 (3) 行政機関との断層パラメータの比較

1. 1	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1)	基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2)	基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3)	基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4)	基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
	a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
	c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5)	基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
	a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	b. 波源設定の考え方及び解析条件等の比較 (STEP2) ····································	42
	c. 数値シミュレーション結果の比較 (STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
	d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6)	基準津波の策定のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. ₹	債丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. ¥	補足説明資料 •••••	89
(1)	基準津波の最大水位上昇量分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2)		94
(3)	行政機関との断層パラメータの比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4)	津波の数値シミュレーションに関する過去の審査からの変更点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
ų – ¢		_
参考了	文献 ••••••••••••••••••••••••••••••••••••	16

(3) 行政機関との断層パラメータの比較

「国土交通省ほか(2014)」との断層パラメータの比較

○「日本海東縁部に想定される地震に伴う津波」と「国土交通省ほか(2014)」の断層パラメータを下表に示す。

「日本海東縁部に想定される地震に伴う津波」の断層パラメータ

断層パラメータ	日本海東縁部 (L=320km)	設定根拠 令和4年5月27日審査会合において説明
モーメントマグニチュート゛Mw	8.22 8.06	M_{w} = (logM ₀ -9.1) / 1.5, M ₀ = µLWD, µ=3.5×10 ¹⁰ N/m ²
断層長さ L	320km	想定波源域 (南北方向)より設定
断層幅 ₩	40km 23.1km	地震発生層厚さ(20km) ※を考慮し傾斜角に応じて設定 ※地震発生層厚さは想定波源域(深度方向)より設定
平均すべり量 D	6.00m	D』:以下の知見より設定
すべり量 (背景領域) D _b	4.00m	】 > 世界の内陸で発生した地震の最大地表変位量(Murotani et al.(2015))
すべり量(大すべり域)Da	12.00m	ンプリーウング前においる最大すべり量(国主交通省ほか(2014), 地震本部(2016), エホ学会(2016)) > 既往津波の再現性が確認されている断層モデルにおける最大すべり量の最大値(土木学会(2016)) D _b :日本海東縁部のアスペリティモデルのすべり量の設定方法より設定(根本ほか(2009))
断層面上縁深さ d	1km	日本海東縁部のアスペリティモデルより設定(根本ほか(2009))
走向 θ	東傾斜:3° 西傾斜:183°	既往地震のハーバードCMT解及び対象海域における「地形の走向」より設定(土木学会(2016))
傾斜角 δ	30° 60°	既往津波の再現性が確認されている断層モデルより設定(土木学会(2016))
すべり角 λ	90°	既往地震のハーバードCMT解及び東北地方から北海道地方の沿岸におけるすべり角の分布より設定 (土木学会(2016),国土交通省ほか(2014))

国土交通省ほか(2014)の断層パラメータ

昨日パニュ ケ		F12断層			F14	断層		F15断層				
町層ハフメーダ	セグメント①	セグメント②	セグメント③	セグメント①	セグメント②	セグメント③	セグメント④	セグメント①	セグメント②	セグメント③	セグメント④	
モーメントマグニチュート゛Mw		7.40			7.80				7.80			
断層長さ L		73.0km			175.	Okm		177.0km				
断層幅 ₩	18.7km	18.7km	18.7km	20.3km	20.3km	20.3km	16.6km	20.1km	20.1km	20.1km	16.4km	
平均すべり量 D		3.71m		6.00m				6.00m				
すべり量 (背景領域)	2.65m	2.84m	2.49m	4.36m	4.36m	4.24m	4.31m	4.67m	4.36m	4.24m	4.31m	
すべり量 (大すべり域)	7.42m	7.42m	7.42m	12.00m	12.00m	12.00m	12.00m	12.00m	12.00m	12.00m	12.00m	
断層面上縁深さ d		1km			1k	m			1k	m		
走向 θ	156°	161°	177°	195°	192°	192°	167°	173°	192°	192°	167°	
傾斜角 δ	45°	45°	45°	45°	45°	45°	60°	45°	45°	45°	60°	
すべり角 λ	62°	65°	79°	99°	111°	111°	105°	97°	111°	111°	105°	

(3) 行政機関との断層パラメータの比較

「北海道(2017)」との断層パラメータの比較

○「日本海東縁部に想定される地震に伴う津波」と「北海道(2017)」の断層パラメータを下表に示す。

「日本海東縁部に想定される地震に伴う津波」の断層パラメータ

断層パラメータ	日本海東縁部 (L=320km)	設定根拠 令和4年5月27日審査会合において説明								
モーメントマク゛ニチュート゛ Mw	8.22 8.06	$M_w = (\log M_0 - 9.1) / 1.5, M_0 = \mu LWD, \mu = 3.5 \times 10^{10} N/m^2$								
断層長さ L	320km	想定波源域(南北方向)より設定								
断層幅 ₩	40km 23.1km	地震発生層厚さ(20km) ※を考慮し傾斜角に応じて設定 ※地震発生層厚さは想定波源域 (深度方向) より設定								
平均すべり量 D	6.00m	Da:以下の知見より設定								
すべり量 (背景領域) D _b	4.00m	と 世界の内陸で発生した地震の最大地表変位量 (Murotani et al. (2015)) こた いいび即にかける モナオ かいそ (2016) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・								
すべり量(大すべり域)Da	12.00m	 ▶ 既往津波の再現性が確認されている断層モデルにおける最大すべり量の最大値(土木学会(2016)) ▶ 助往津波の再現性が確認されている断層モデルにおける最大すべり量の最大値(土木学会(2016)) □ D_b:日本海東縁部のアスペリティモデルのすべり量の設定方法より設定(根本ほか(2009)) 								
断層面上縁深さ d	1km	日本海東縁部のアスペリティモデルより設定(根本ほか(2009))								
走向 θ	東傾斜:3° 西傾斜:183°	既往地震のハーバードCMT解及び対象海域における「地形の走向」より設定(土木学会(2016))								
傾斜角 δ	30° 60°	既往津波の再現性が確認されている断層モデルより設定(土木学会(2016))								
すべり角 λ	90°	既往地震のハーバードCMT解及び東北地方から北海道地方の沿岸におけるすべり角の分布より設定 (土木学会(2016),国土交通省ほか(2014))								

北海道(2017)の断層パラメータ

戦 戻 パニュータ	F12断層			F14断層①			F14断層②			F15断層					
町層ハフメーダ	セグメント①	セグメント②	セグメント③	セグメント①	セグメント②	セグメント③	セグメント④	セグメント①	セグメント②	セグメント③	セグメント④	セグメント①	セグメント②	セグメント③	セグメント④
モーメントマグニチュート゛Mw		7.50			7.	92		7.89				7.92			
断層長さし		73.0km			175	.0km			175.	.0km			177.	Okm	
断層幅 W	18.7km	18.7km	18.7km	20.3km	20.3km	20.3km	16.6km	20.3km	20.3km	20.3km	16.6km	20.1km	20.1km	20.1km	16.4km
平均すべり量 D		3.71m			6.0	Om			7.5	Om			6.0	Om	
すべり量 (背景領域)	2.65m	2.84m	2.49m	4.36m	4.36m	4.24m	4.31m	6.00m	6.00m	6.00m	I	4.67m	4.36m	4.24m	4.31m
すべり量 (大すべり域)	7.42m	7.42m	7.42m	12.00m	12.00m	12.00m	12.00m	1	-	-	12.00m	12.00m	12.00m	12.00m	12.00m
断層面上縁深さ d		1km			11	m			14	m			1k	m	
走向 θ	156°	161°	177°	195°	192°	192°	167°	195°	192°	192°	167°	173°	192°	192°	167°
傾斜角 δ	45°	45°	45°	45°	45°	45°	60°	45°	45°	45°	60°	45°	45°	45°	60°
すべり角 λ	62°	65°	79°	99°	111°	111°	105°	99°	111°	111°	105°	97°	111°	111°	105°

105

3. 補足説明資料

(3) 行政機関との断層パラメータの比較

「秋田県(2016)」との断層パラメータの比較

○「日本海東縁部に想定される地震に伴う津波」と「秋田県(2016)」の断層パラメータを下表に示す。

「日本海東縁部に想定される地震に伴う津波」の断層パラメータ

断層パラメータ	日本海東縁部 (L=320km)	設定根拠	令和4年5月27日審査会合において説明						
モーメントマクニチュート、Mw	8.22 8.06	8.06 $M_w = (\log M_0 - 9.1) / 1.5, M_0 = \mu LWD, \mu = 3.5 \times 10^{10} N/m^2$							
断層長さ L	320km	想定波源域(南北方向)より設定							
断層幅 ₩	40km 23.1km	地震発生層厚さ (20km) ※を考慮し傾斜角に応じて設定 ※地震発生層厚さは想定波源域 (深度方向)より設定							
平均すべり量 D	6.00m	D』:以下の知見より設定							
すべり量 (背景領域) D _b	4.00m	世界の内陸で発生した地震の最大地表変位量 (Murotani et al. (2015)) スト いくび即における 思ったいいき (同一本) あるなど(たわ (2014)) 地震大部 (2016) したさ ホーム ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
すべり量(大すべり域)Da	12.00m	アメリージング前によいる最大すべり室(国工交通省はか) 医往津波の再現性が確認されている断層モデルにおける D _b :日本海東縁部のアスペリティモデルのすべり量の設定プ	2014), 地震本部(2016), エネ学会(2016)))最大すべり量の最大値(土木学会(2016)) う法より設定(根本ほか(2009))						
断層面上縁深さ d	1km	日本海東縁部のアスペリティモデルより設定(根本ほか(2)	009))						
走向 θ	東傾斜:3° 西傾斜:183°	既往地震のハーバードCMT解及び対象海域における「地形	の走向」より設定(土木学会(2016))						
傾斜角 δ	30° 60°	既往津波の再現性が確認されている断層モデルより設定	(土木学会(2016))						
すべり角 λ	90°	- 既往地震のハーバードCMT解及び東北地方から北海道地方の沿岸におけるすべり角の分 (土木学会(2016),国土交通省ほか(2014))							

秋田県 (2016) の断層パラメータ

断層パラメータ	海域A+B+C 連動モデル					
モーメントマグニチュート、 Mw	8.69					
断層長さ L	350km					
断層幅 ₩	135km					
平均すべり量 D	8.10m					
最大すべり量	16.2m					
断層面上縁深さ d	Okm					
走向 θ	14°					
傾斜角 δ	20°					
すべり角 λ	90°					

1. 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3) 基準津波の策定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
b. 波源設定の考え方及び解析条件等の比較(STEP2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
c.数値シミュレーション結果の比較(STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. 補足説明資料	89
(1) 基準津波の最大水位上昇量分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2) 行政機関の検討概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	102
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	106
参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	116

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

○過去の審査会合では,以下のとおり,各評価について津波の数値シミュレーション結果を示した。

> 平成26年12月5日審査会合:海域活断層に想定される地震に伴う津波(F_B-2断層, F_S-10断層~岩内堆東撓曲~岩内堆南方背斜)

> 平成27年8月21日審査会合:地震以外の要因に伴う津波(陸上地すべり(川白),岩盤崩壊(ビンノ岬付近),海底地すべりE 及び 火山による山体崩壊(渡島大島))

○一方, 上記審査会合以降に, 防潮堤等の構造が変更となっていることから, 計算条件 (地形モデル, 評価項目)を下表のとおり変更している※1。

※1:「日本海東縁部に想定される地震に伴う津波」、「積丹半島北西沖の断層」及び「地震に伴う津波と地震以外の要因に伴う津波の組合せ」は、最新の計算条件を用いている。

○以上より、各評価について、過去の審査会合時の計算条件(地形モデル、評価項目)から、最新の条件に更新して、数値シミュレーションを再実施した^{※2}(結果は次頁 以降参照)。 ※2:地形モデル、評価項目以外の条件については変更していない。

107

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

F_B-2断層(1/2)

○「F_B-2断層」について,過去の審査会合時点の計算条件(地形モデル,評価項目)から,最新の計算条件に更新したことによる,評価結果の変更内容 は以下のとおりである。

A:評価項目のうち「敷地前面(上昇側)」を「防潮堤前面(上昇側)」に更新したことにより、最大水位位置(最大水位変動量も含む)に変更が生じた(朱書き箇所)。 ▶ 上記Aと同様の理由により、「防潮堤前面(上昇側)」の最大ケースの選定結果(最大水位変動量も含む)に変更が生じた(青書き箇所、詳細は、次頁参照)。
B:地形モデルを更新したことにより、「1号及び2号炉取水口(上昇側)」並びに「3号炉取水口(水位下降量)」の最大水位変動量に変更が生じた(緑書き箇所)。

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

$F_B - 2$ 断層(2/2) パラメータスタディの選定過程

○パラメータスタディの手法は変更前後で同様であるが、過去の審査会合時点の計算条件(地形モデル、評価項目)から、最新の計算条件に更新したことによって、以下のとおり最大ケースの選定結果に変更が生じた。
 ▶ 概略パラメータスタディ:「敷地前面(上昇側)」から「防潮堤前面(上昇側)」に更新したことにより、最大ケースの選定結果に変更が生じた(水色ハッチング箇所)。

▶ 詳細パラメータスタディ:「敷地前面(上昇側)」から「防潮堤前面(上昇側)」に更新したことにより、最大ケースの選定結果に変更が生じた(青ハッチング箇所)。

○なお,最大ケースに変更は生じているが,水位変動量が大きくなる波源を選定できていることから,保守的な波源選定となっている。

変更前(平成26年12月5日審査会合説明)

【概略パラメータスタディ結果 (傾斜角, すべり角のパラメータスタディ)】

黄ハッチングは評価項目の最大ケースである。

【詳細パラメータスタディ結果(断層面上縁深さのパラメータスタディ)】

	変動パラメータ	敷地前面	3号炉 取水口	1号及び 2号炉 取水口	放水口	3号炉	取水口	
対象ケース	北房子し紀河と	(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下F	夆側)	
	町 唐 田 工 稼 滞 さ	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間	
概略バラメータスタディ 最大ケース① ・傾斜角:45° ・すべり角:90°	Okm	4.66m	3.24m	3.05m		-3.37m		
	2.5km	4.89m	3.43m	3.31m		-3.40m	-7	
	5km	4.77m	3.56m	3.53m	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	-3.36m	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	
概略パラメータスタディ	Okm	4.79m	3.29m	3.01m	家	-2.87m	象	
最大ケース②	2.5km	5.05m	3.54m	3.31m	17	-2.74m	1	
・傾斜角:60° ・すべり角:90°	5km	5.05m	3.76m	3.60m		-2.97m		

<mark>黄ハッチング</mark>は評価項目の最大ケースである。

【概略パラメータスタディ結果(傾斜角. すべり角のパラメータスタディ)】

変更後(今回説明)

	変動パ	ラメータ	防潮堤前面	3号炉 取水口	1号及び 2号炉 取水口	放水口	3号炉	取水口					
対象ケース			(上昇側)	:昇側) (上昇側) (.		(上昇側)	(下降側)		(下降側)		上昇側)(下降		
	傾斜角	傾斜角	すべり角	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間				
		75°	3.91m	2.78m	2.76m	2.14m	-3.12m	Os					
	30°	90°	4.12m	2.91m	2.86m	2.23m	-3.23m	0s					
	00	105°	3.96m	2.91m	2.83m	2.16m	-3.17m	Os					
基準断層モデル		75°	4.21m	3.14m	2.92m	3.18m	-3.27m	Os					
	45°	90°	4.29m	3.24m	3.05m	3.29m	-3.36m	Os	→ 機略バラメータスタティ 最大ケース(1)				
・断層面上縁深さ:0km		105°	4.15m	3.19m	3.03m	3.19m	-3.33m	Os					
		75°	3.97m	3.20m	2.93m	3.49m	-2.78m	Os					
	60°	90°	4.17m	3.29m	3.01m	3.62m	-2.86m	Os	→ 概略パラメータスタティ 最大ケースの				
		105°	3.96m	3.21m	2.97m	3.50m	-2.85m	Os	44747 718				

黄ハッチング:変更後の評価項目の最大ケース,かつ,変更前 (左表)と同ケース 水色ハッチング:変更後の評価項目の最大ケース,かつ,変更前 (左表) から変更が生じたケース

【詳細パラメータスタディ結果(断層面上縁深さのパラメータスタディ)】

対象ケース	変動パラメータ	防潮堤前面	前面 3号炉 1号及び 取水口 2号炉 取水口 取水口		放水口	3号炉取水口	
	断層面上縁深さ	(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下降	夆側)
		水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間
概略パラメータスタディ 最大ケース① ・傾斜角:45° ・すべり角:90°	Okm	4.29m	3.24m	3.05m	3.29m	-3.36m	Os
	2.5km	4.69m	3.43m	3.31m	3.35m	-3.37m	Os
	5km	5.16m	3.54m	3.53m	3.18m	-3.33m	Os
概略バラメータスタディ 最大ケース② ・傾斜角:60° ・すべり角:90°	Okm	4.17m	3.29m	3.01m	3.62m	-2.86m	Os
	2.5km	3.84m	3.55m	3.32m	3.51m	-2.75m	Os
	5km	4.11m	3.76m	3.61m	3.15m	-3.00m	Os

黄ハッチング:変更後の評価項目の最大ケース, かつ, 変更前 (左表)と同ケース 青ハッチング:変更後の評価項目の最大ケース, かつ, 変更前 (左表) から変更が生じたケース 110

3. 補足説明資料

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜(1/2)

○「F_s-10断層~岩内堆東撓曲~岩内堆南方背斜」について、過去の審査会合時点の計算条件(地形モデル,評価項目)から、最新の計算条件に更新したことによる,評価結果の変更内容は以下のとおりである。
 A:評価項目のうち「敷地前面(上昇側)」を「防潮堤前面(上昇側)」に更新したことにより、最大水位位置(最大水位変動量も含む)に変更が生じた(朱書き箇所)。
 > 上記Aと同様の理由により、「防潮堤前面(上昇側)」他の最大ケースの選定結果(最大水位変動量も含む)に変更が生じた(青書き箇所,詳細は、次頁参照)。
 B:地形モデルを更新したことにより、「1号及び2号炉取水口(上昇側)」並びに「3号炉取水口(水位下降量)」の最大水位変動量に変更が生じた(緑書き箇所)。

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜(2/2) パラメータスタディの選定過程

○パラメータスタディの手法は変更前後で同様であるが、過去の審査会合時点の計算条件(地形モデル、評価項目)から、最新の計算条件に更新したことによって、以下のとおり最大ケースの選定結果に変更が生じた。

▶ 概略パラメータスタディ:「敷地前面(上昇側)」から「防潮堤前面(上昇側)」に更新したことにより、最大ケースの選定結果に変更が生じた(水色ハッチング箇所)。

▶ 詳細パラメータスタディ:概略パラメータスタディ最大ケースの変更に伴い,詳細パラメータスタディの最大ケースの選定結果も変更が生じた(青ハッチング箇所)。 ○なお.最大ケースに変更は生じているが.水位変動量が大きくなる波源を選定できていることから.保守的な波源選定となっている。

変更前(平成26年12月5日審査会合説明) 【概略パラメータスタディ結果(傾斜角、すべり角のパラメータスタディ)】 1号及び 2号炉 3号炉 変動パラメータ数地前面 放水口 3号炉取水口 取水口 取水口 対象ケース (上昇側) (上昇側) (上昇側) (上昇側) (下降側) 傾斜角 すべり角 貯留堰を 下回る時間 水位変動量 水位変動量 水位変動量 水位変動量 水位変動量 4.11m 3.75m -3.25m 3.63m 75° 90° 4.08m 3.71m 3.62m -3.17m 30° 105° 3.86m 3.49m 3.42m -2.97m 評価 評価 75° 4.99m 4.07m 4.00m -3.57m 基準断層モデル 対 対 90° 5.14m 4.06m 4.01m -3.47m 45° ・断層面上縁深さ:0km -3.41m 象 105° 5.02m 3.90m 3.86m 外 外 -3.72m 75° 5.29m 4.16m 4.11m 概略パラメータスタディ 最大ケース(2) 5.42m 4.27m -3.87m 90° 4 30m 60° 5.29m 4.22m 4.18m -3.75m 105° 黄ハッチングは評価項目の最大ケースである。

【詳細パラメータスタディ結果(断層面上縁深さのパラメータスタディ)】

	変動パラメータ	敷地前面	3号炉 取水口	1号及び 2号炉 取水口	放水口	3号炉	取水口	
対象ケース		(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下)	夆側)	
	断層面上稼冻さ	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰 下回る時	
		-						
概略パラメータスタディ結果より, 「概略パラメータスタディ最大ケース②」 以外は評価対象外								
概略バラメータスタディ 最大ケース② ・傾斜角:60° ・すべり角:90°	Okm	5.42m	4.30m	4.27m	評	-3.87m	評	
	2.5km	5.49m	4.56m	4.51m	一対	-4.24m	御対	
	5km	5.39m	4.64m	4.54m	 外	-4.17m	外	

<mark>黄ハッチング</mark>は評価項目の最大ケースである。

【概略パラメータスタディ結果(傾斜角、すべり角のパラメータスタディ)】

	変動パ	ラメータ	防潮堤前面	3号炉 取水口	1号及び 2号炉 取水口	放水口	3号炉	取水口	
対象ケース		(上昇側)(上昇側)(上昇側)(上昇側)(上昇側)(上昇側)		夆(則)					
	傾斜角	すべり用	水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間	
		75°	5.84m	3.76m	3.64m	2.43m	-3.25m	Os	
	30°	90°	6.02m	3.73m	3.62m	2.59m	-3.18m	Os	
	00	105°	5.80m	3.50m	3.42m	2.56m	-2.97m	Os	
基準断層モデル		75°	6.21m	4.09m	3.99m	3.17m	-3.58m	Os	→ 磯略ハフメータ人タティ 最大ケース(1)
	45°	90°	6.15m	4.06m	4.01m	3.23m	-3.48m	Os	
・断層面上縁深さ:0km		105°	5.87m	3.89m	3.86m	3.12m	-3.46m	0s	
		75°	5.75m	4.13m	4.10m	3.58m	-3.73m	Os	
	60°	90°	5.61m	4.25m	4.26m	3.74m	-3.90m	Os	→ 概略バラメータスタディ 最大ケース2
		105°	5.30m	4.18m	4.17m	3.65m	-3.79m	Os	

変更後(今回説明)

黄ハッチング:変更後の評価項目の最大ケース,かつ,変更前 (左表)と同ケース 水色ハッチング:変更後の評価項目の最大ケース,かつ,変更前 (左表) から変更が生じたケース

【詳細パラメータスタディ結果(断層面上縁深さのパラメータスタディ)】

対象ケース	変動パラメータ	防潮堤前面	3号炉 取水口	1号及び 2号炉 取水口	放水口	3号炉取水口	
	断層面上縁深さ	(上昇側)	(上昇側)	(上昇側)	(上昇側)	(下降側)	
		水位変動量	水位変動量	水位変動量	水位変動量	水位変動量	貯留堰を 下回る時間
概略バラメータスタディ 最大ケース① ・傾斜角:45° ・すべり角:75°	Okm	6.21m	4.09m	3.99m	3.17m	-3.58m	Os
	2.5km	6.60m	4.51m	4.44m	3.42m	-3.75m	Os
	5km	6.67m	4.70m	4.69m	3.39m	-3.96m	13s
概略パラメータスタディ	Okm	5.61m	4.25m	4.26m	3.74m	-3.90m	Os
最大ケース② ・傾斜角:60° ・すべり角:90°	2.5km	5.78m	4.54m	4.50m	3.60m	-4.28m	33s
	5km	6.06m	4.63m	4.55m	3.80m	-4.21m	26s

黄ハッチング</mark>:変更後の評価項目の最大ケース, かつ, 変更前 (左表)と同ケース 青ハッチング</mark>:変更後の評価項目の最大ケース, かつ, 変更前 (左表) から変更が生じたケース

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

陸上地すべり(川白)

○「陸上地すべり(川白)」について,過去の審査会合時点の計算条件(地形モデル,評価項目)から,最新の計算条件に更新したことによる,評価結果の 変更内容は以下のとおりである。

A:評価項目のうち「敷地前面(上昇側)」を「防潮堤前面(上昇側)」に更新したことにより、最大水位位置(最大水位変動量も含む)に変更が生じた(朱書き箇所)。

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

岩盤崩壊(ビンノ岬付近)

○「岩盤崩壊 (ビンノ岬付近)」について,過去の審査会合時点の計算条件 (地形モデル,評価項目)から,最新の計算条件に更新したことによる,評価結果の変更内容は以下のとおりである。

A:評価項目のうち「敷地前面(上昇側)」を「防潮堤前面(上昇側)」に更新したことにより、最大水位位置(最大水位変動量も含む)に変更が生じた(朱書き箇所)。

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

114

海底地すべりE

○「海底地すべりE」について,過去の審査会合時点の計算条件(地形モデル,評価項目)から,最新の計算条件に更新したことによる,評価結果の変更 内容は以下のとおりである。

A:評価項目のうち「敷地前面(上昇側)」を「防潮堤前面(上昇側)」に更新したことにより,最大水位位置(最大水位変動量も含む)に変更が生じた(<mark>朱書き</mark>箇所)。

(4) 津波の数値シミュレーションに関する過去の審査からの変更点

火山による山体崩壊(渡島大島)

○「火山による山体崩壊(渡島大島)」について、過去の審査会合時点の計算条件(地形モデル、評価項目)から、最新の計算条件に更新したことによる、 評価結果に変更は生じていない。

1. 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(1) 基準津波の策定方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
(2) 基準津波の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
(3) 基準津波の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
(4) 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
a. 基準津波と既往津波から推定される津波高との比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
b. 比較的層厚が大きい津波堆積物の考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
c. 既往津波から推定される津波高のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
(5) 基準津波と行政機関による津波評価との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
a. 比較対象の選定 (STEP1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
b. 波源設定の考え方及び解析条件等の比較 (STEP2) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
c. 数値シミュレーション結果の比較 (STEP3) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
d. 行政機関による津波評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	67
(6) 基準津波の策定のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
2. 積丹半島北西沖の断層による津波評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
3. 補足説明資料 ······	89
(1) 基準津波の最大水位上昇量分布 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	90
(2) 行政機関の検討概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
(3) 行政機関との断層パラメータの比較 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	02
(4) 津波の数値シミュレーションに関する過去の審査からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	06
参考文献 ••••••••••••••••••••••••••••••••••••	16

- ・ 北海道 (2013):平成24年度日本海沿岸の津波浸水想定の点検・見直し報告書,北海道に津波被害をもたらす想定地震の再検討ワーキンググループ.
- 北海道立総合研究機構(2013):平成24年度津波堆積物調査研究業務報告書。
- 川上源太郎・仁科健二・加瀬善洋・廣瀬亘・田近淳・渡邊達也・石丸聡・嵯峨山積・林圭一・高橋良・深見浩司・田村慎・輿水健一・岡崎紀俊・大津直(2015):北海道の日本海・オホーツク海沿岸における津波履歴:充填研究「北海道の津波災害履歴の研究-未解明地域を中心に一」成果報告書,北海道地質研究所調査研究報告,第42号,pp1-218.
- ・ 東大地震研(2017):平成29年度「日本海地震・津波調査プロジェクト」成果報告書.
- ・川上源太郎・加瀬善洋・ト部厚志・高清水康博・仁科健二(2017a):日本海東縁の津波とイベント堆積物,地質学雑誌,第123巻,第10号,pp.857-877.
- Gentaro Kawakami, Kenji Nishina, Yoshihiro Kase, Jun Tajika, Keiichi Hayashi, Wataru Hirose, Tsumoru Sagayama, Tatsuya Watanabe, Satoshi Ishimaru, Ken 'ichi Koshimizu, Ryo Takahashi and Kazuomi Hirakawa. (2017b) : Stratigraphic record tsunami along the Japan Sea, southwest Hokkaido, northern Japan, Island Arc, Volume26, Issue4, p.18.
- ・藤原治(2015):津波堆積物の科学,東京大学出版会,2015年11月.
- ・ 国土交通省・内閣府・文部科学省(2014):日本海における大規模地震に関する調査検討会報告書,平成26年9月日本海における大規模地震に関する調査検討会.
- ・ 地震本部 (2003):日本海東縁部の地震活動の長期評価について, 地震調査研究推進本部
- Murotani, S., Matsushima, S., Azuma, T., Irikura, K. and Kitagawa, S. (2015) : Scaling Relations of Source Parameters of Earthquakes Occurring on Inland Crustal Mega-Fault Systems, Pure and Applied Geophysics, Vol.172, pp.1371-1381.
- ・ 地震本部 (2016): 震源断層を特定した地震の強振動予測手法 (「レシピ」), 平成28年6月, 地震調査研究推進本部, 地震調査委員会.
- 根本信・高瀬嗣郎・長谷部大輔・横田崇(2009):日本海におけるアスペリティを考慮した津波波源モデルの検討,土木学会論文集B2(海岸工学), Vol.B2-65, No.1, pp.346-350.
- ・ 阿部勝征 (1989): 地震と津波のマグニチュードに基づく津波高の予測 東京大学地震研究所彙報, Vol.64, pp.51 69.
- ・ 武村雅之(1998):日本列島における地殻内地震のスケーリング則ー地震断層の影響および地震被害との関連ー, 地震第2輯, 第51巻, pp.211-228.
- ・ 大竹政和・平朝彦・太田陽子編(2002):日本海東縁の活断層と地震テクトニクス,東京大学出版会.

- (WEB)
- 北海道(2017):北海道日本海沿岸における津波浸水想定の公表について. https://www.pref.Hokkaido.lg.jp/kn/sbs/nihonkai_tsunami-sinnsuisoutei.html
- ・ 青森県(2021):津波浸水想定の設定. https://www.pref.aomori.lg.jp/kotsu/build/tunami-sinsuisoutei.html
- ・ 秋田県 (2013):「地震被害想定調査」に係る津波関連データについて. https://www.pref.akita.lg.jp/pages/archive/6779
- ・ 秋田県 (2016):津波浸水想定について (解説). https://www.bousai-akita.jp/pages/?article_id=293
- ・ 山形県 (2014) :山形県津波浸水想定, 被害想定検討委員会について. https://www.pref.yamagata.jp/020072/bosai/kochibou/bousaijouhou/jishintsunami/tsunami/shinsuisoutei/tsunamiiinkai.html
- 新潟県(2023):新潟県地域防災計画. https://www.pref.niigata.lg.jp/sec/bosaikikaku/sec-bousaikikaku-chiikibousaikeikaku.html
- 石川県(2012):石川県津波浸水想定区域図の作成について. https://www.pref.ishikawa.lg.jp/bousai/kikikanri_g/tsunami_info.html
- 福井県(2012):福井県における津波シミュレーション結果の公表について. https://www.pref.fukui.lg.jp/doc/kikitaisaku/kikitaisaku/tunami-soutei.html
- 鳥取県(2012):鳥取県津波対策検討業務報告書概要,富山県知事政策局,鳥取県. https://tottori.pref.okayama.jp/secure/747503/20120821_fu_kikikanri_houkoku1.pdf
- ・ 島根県 (2017): 津波浸水想定について (解説).

https://www.pref.shimane.lg.jp/bousai_info/bousai/bousai/bosai_shiryo/tsunamishinsui_souteizuH29.html

- 山口県 (2015a):第10回山口県地震・津波防災対策検討委員会. https://www.pref.yamaguchi.lg.jp/soshiki/6/12626.html
- ・山口県 (2015b) :山口県津波浸水想定図. https://www.pref.yamaguchi.lg.jp/soshiki/6/12640.html